共查询到4条相似文献,搜索用时 15 毫秒
1.
This continuation deals with the bioconvection flow of magnetized Maxwell nanofluid over a stretched cylinder in presence of slip effects. The novel features of activation energy and thermal radiation are also encountered to analyze the flow. The higher order slip relations are introduced to inspect the thermal flow problem. The flow model is developed in terms of dimensionless equations via appropriate variables. The numerical simulations are presented with shooting scheme by using MATLAB software. The physical outcomes of interesting parameters are visualized. The observations show that velocity profile reduces with unsteady parameter, curvature constant and second order slip factor. The temperature profile enhanced with first order velocity slip parameter and curvature constant. Moreover, nanofluid concentration reduces with Lewis number and Brownian constant. 相似文献
2.
M. Ijaz Khan Sumaira Qayyum T. Hayat M. Imran Khan A. Alsaedi Tufail Ahmad Khan 《Physics letters. A》2018,382(31):2017-2026
In this communication, an optimization of entropy generation is performed through thermodynamics second law. Tangent hyperbolic nanomaterial model is used which describes the important slip mechanism namely Brownian and thermophoresis diffusions. MHD fluid is considered. The novel binary chemical reaction model is implemented to characterize the impact of activation energy. Nonlinear mixed convection, dissipation and Joule heating are considered. Appropriate similarity transformations are implemented to get the required coupled ODEs system. The obtained system is tackled for series solutions by homotopy method. Graphs are constructed to analyze the impact of different flow parameters on entropy number, nanoparticle volume concentration, temperature and velocity fields. Total entropy generation rate is calculated via various flow variables. It is noticed from obtained results that entropy number depend up thermal irreversibility, viscous dissipation and Joule heating irreversibility and concentration irreversibility. Decreasing behavior of concentration is witnessed for higher estimations of chemical reaction variable. Entropy number is more for higher Hartmann number, Weissenberg number and chemical reaction variable while contrast behavior is noted for Bejan number. 相似文献
3.
Research on flow and heat transfer of hybrid nanofluids has gained great significance due to their efficient heat transfer capabilities.In fact,hybrid nanofluids are a novel type of fluid designed to enhance heat transfer rate and have a wide range of engineering and industrial applications.Motivated by this evolution,a theoretical analysis is performed to explore the flow and heat transport characteristics of Cu/Al2O3 hybrid nanofluids driven by a stretching/shrinking geometry.Further,this work focuses on the physical impacts of thermal stratification as well as thermal radiation during hybrid nanofluid flow in the presence of a velocity slip mechanism.The mathematical modelling incorporates the basic conservation laws and Boussinesq approximations.This formulation gives a system of governing partial differential equations which are later reduced into ordinary differential equations via dimensionless variables.An efficient numerical solver,known as bvp4c in MATLAB,is utilized to acquire multiple(upper and lower)numerical solutions in the case of shrinking flow.The computed results are presented in the form of flow and temperature fields.The most significant findings acquired from the current study suggest that multiple solutions exist only in the case of a shrinking surface until a critical/turning point.Moreover,solutions are unavailable beyond this turning point,indicating flow separation.It is found that the fluid temperature has been impressively enhanced by a higher nanoparticle volume fraction for both solutions.On the other hand,the outcomes disclose that the wall shear stress is reduced with higher magnetic field in the case of the second solution.The simulation outcomes are in excellent agreement with earlier research,with a relative error of less than 1%. 相似文献
4.
Aamar Abbasi Waseh Farooq M Ijaz Khan Sami Ullah Khan Yu-Ming Chu Zahid Hussain M Y Malik 《理论物理通讯》2021,73(9):95004
Entropy generation is the loss of energy in thermodynamical systems due to resistive forces,diffusion processes, radiation effects and chemical reactions. The main aim of this research is to address entropy generation due to magnetic field, nonlinear thermal radiation, viscous dissipation, thermal diffusion and nonlinear chemical reaction in the transport of viscoelastic fluid in the vicinity of a stagnation point over a lubricated disk. The conservation laws of mass and momentum along with the first law of thermodynamics and Fick's law are used to discuss the flow, heat and mass transfer, while the second law of thermodynamics is used to analyze the entropy and irreversibility. The numbers of independent variables in the modeled set of nonlinear partial differential equations are reduced using similarity variables and the resulting system is numerically approximated using the Keller box method. The effects of thermophoresis,Brownian motion and the magnetic parameter on temperature are presented for lubricated and rough disks. The local Nusselt and Sherwood numbers are documented for both linear and nonlinear thermal radiation and lubricated and rough disks. Graphical representations of the entropy generation number and Bejan number for various parameters are also shown for lubricated and rough disks. The concentration of nanoparticles at the lubricated surface reduces with the magnetic parameter and Brownian motion. The entropy generation declines for thermophoresis diffusion and Brownian motion when lubrication effects are dominant. It is concluded that both entropy generation and the magnitude of the Bejan number increase in the presence of slip. The current results present many applications in the lubrication phenomenon,heating processes, cooling of devices, thermal engineering, energy production, extrusion processes etc. 相似文献