首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A modified glassy carbon electrode has been constructed using a 1-benzyl-4-ferrocenyl-1H-[1,2,3]-triazole along with multiwalled carbon nanotubes. The electrochemical behaviour of modified electrode has been investigated by cyclic voltammetry. Electrocatalytic activity of the modified electrode was investigated for the oxidation of hydroxylamine in 0.1 M phosphate-buffered solution of pH 8. The modified electrode showed electrocatalytic response to the oxidation of hydroxylamine at the potential of 330 mV. The linear range and detection limit for the detection of hydroxylamine in the optimum condition were found to be 4.0?×?10?7 to 6.75?×?10?4 M and 28.0?±?1.0 nM, respectively. Finally, the method was employed for the determination of hydroxylamine in water samples.  相似文献   

2.
A novel biosensor has been constructed by incorporating modified nanosized natural zeolite and 3-hydroxypropanaminium acetate (HPAA) as a novel room temperature ionic liquid, supported on multiwalled carbon nanotube (MWCNTs) and employed for the simultaneous determination of dopamine (DA) and uric acid (UA). A detailed investigation by transmission electron microscopy and electrochemistry is performed in order to elucidate the preparation process and properties of the composites. The voltammetric studies using the modified carbon paste electrode show two well-resolved anodic peaks for DA and UA with a potential difference of 160 mV, revealing the possibility of the simultaneous electrochemical detection of these compounds. The modified carbon paste electrode shows good conductivity, stability, and extraction effect due to the synergic action of HPAA, MWCNTs, and iron ion-doped natrolite zeolite. Under optimized conditions, the peak currents are linear from 8.12?×?10?7 to 3.01?×?10?4?mol?L?1 and from 9.31?×?10?7 to 3.36?×?10?4?mol?L?1 with detection limits of 1.16?×?10?7 and 1.33?×?10?7?mol?L?1 for DA and UA using the differential pulse voltammetric method, respectively. Finally, the modified carbon paste electrode proved to have good sensitivity and stability and is successfully applied for the simultaneous determination of DA and UA in human blood serum and urine samples.  相似文献   

3.
We describe the ultrasonic assisted preparation of barium stannate-graphitic carbon nitride nanocomposite (BSO-gCN) by a simple method and its application in electrochemical detection of 4-nitrophenol via electro-oxidation. A bath type ultrasonic cleaner with ultrasonic power and ultrasonic frequency of 100 W and 50 Hz, respectively, was used for the synthesis of BSO-gCN nanocomposite material. The prepared BSO-gCN nanocomposite was characterized by employing several spectroscopic and microscopic techniques such as X-ray diffraction, X-ray photoelectron spectroscopy, fourier transform infra-red, field emission scanning electron microscopy, and high resolution transmission electron microscopy, to unravel the structural and electronic features of the prepared nanocomposite. The BSO-gCN was drop-casted on a pre-treated glassy carbon electrode (GCE), and their sensor electrode was utilized for electrochemical sensing of 4-nitrophenol (4-NP). The BSO-gCN modified GCE exhibited better electrochemical sensing behavior than the bare GCE and other investigated electrodes. The electroanalytical parameters such as charge transfer coefficient (α = 0.5), the rate constant for electron transfer (ks = 1.16 s−1) and number of electron transferred were calculated. Linear sweep voltammetry (LSV) exhibited increase in peak current linearly with 4-NP concentration in the range between 1.6 and 50 μM. The lowest detection limit (LoD) was calculated to be 1 μM and sensitivity of 0.81 μA μM−1 cm−2. A 100-fold excess of various ions, such as Ca2+, Na+, K+, Cl, I, CO32−, NO3, NH4+ and SO42− did not able to interfere with the determination of 4-NP and high sensitivity for detecting 4-NP in real samples was achieved. This newly developed BSO-gCN could be a potential candidate for electrochemical sensor applications.  相似文献   

4.
Jing Li  Huaqing Xie 《Ionics》2013,19(1):105-112
A sensitive hydroxylamine sensor is developed by electrodeposition of Pt nanoparticles on pre-synthesized polypyrrole nanoparticles modified glassy carbon electrode. The modified electrode presents distinctly electrocatalytic activity toward hydroxylamine oxidation. The kinetic parameters such as the overall numbers of electrons involved in hydroxylamine oxidation, the electron transfer coefficient, standard heterogeneous rate constant, and diffusion coefficient are evaluated. The current response increases linearly with increasing hydroxylamine concentrations and exhibits two wide linear ranges of 5.0?×?10?7–1.1?×?10?3 and 1.1?×?10?3–18.8?×?10?3 M with a detection limit of 0.08 μM (s/n?=?3). The proposed electrode presents excellent operational and storage ability for determining hydroxylamine. Moreover, the sensor shows good sensitivity, selectivity, and reproducibility properties.  相似文献   

5.
《Current Applied Physics》2010,10(5):1302-1305
Bottom-contact (BC) copper phthalocyanine (CuPc) thin film transistor with UV/ozone treated Au as a source/drain electrode was fabricated and the contact resistance was estimated from the transmission line method (TLM). Comparing the properties of OTFT with untreated Au electrode, the performance of the BC CuPc-TFT with the UV/ozone treated Au electrodes was significantly improved: saturation mobility increased from 4.69 × 10−3 to 2.37 × 10−2 cm2/V s, threshold voltage reduced from −29.1 to −6.4 V, and threshold swing varied from 5.08 to 2.25 V/decade. The contact resistance of the device with UV/ozone treated Au electrodes was nearly 20 times smaller than that of the device with untreated Au electrodes at the gate voltage of −20 V. This result indicated that using the UV/ozone treated Au electrode is an effective method to reduce the contact resistance. The present BC configuration with UV/ozone treated Au electrodes could be a significant step towards the commercialization of OTFT technology.  相似文献   

6.
《Current Applied Physics》2010,10(2):370-372
In this work, the methanol sensors were fabricated by using Pt dot catalyst electrode and the level of electrochemical response was analyzed. This kind of sensors can be applicable to sensing the methanol concentration in real-time. When we measured the methanol sensor with 5 nm of Pt dot, we could get 2.00 × 10−6, 3.06 × 10−6 and 6.25 × 10−6 A of electric current value for the methanol concentration of 1, 2 and 3 mole, respectively. The measured voltage was 1 V. To optimize the sensitivity level of Pt dot catalyst electrode, the electrodes were made in H-grid shape. The distance between electrode branches was designed to be 80, 150 and 300 μm, respectively. When we measured the electric current–voltage characteristics of methanol sensor with 2 M of methanol, it was 3.06 × 10−6, 2.02 × 10−6 and 1.50 × 10−6 A, for 80, 150 and 200 μm, respectively. Thus it is suggested that more efficient response of methanol sensing is possible when the distance between electrodes is reduced.  相似文献   

7.
A sensitive electrochemical method was developed for the voltammetric determination of thymine at a composite film-modified electrode 1-phenyl-3-methyl-4-(2-furoyl)-5-pyrazolone (HPMαFP)/polypyrrole (Ppy)/glassy carbon electrode (GCE). The electrochemical parameters of thymine were investigated by cyclic voltammetry and differential pulse voltammetry. In pH?=?7.4, one sensitive oxidation peak of thymine with E pa?=?0.968 V was observed on the HPMαFP/PPy-modified electrode. The difference of peak potential (?E pa) was 188 mV lower than that for bare GCE. Compared to the bare GCE and Ppy/GCE, the HPMαFP/Ppy/GCE-modified electrode showed an excellent electrocatalytic effect on the oxidation of thymine and displayed a shift of the oxidation potential in the negative direction with significant increase in the peak current. Under the optimum condition, the concentration calibration range and detection limit are 2?×?10?6–1?×?10?4 and 4.85?×?10?7?M for thymine. This developed method had been applied to the direct determination of thymine in medical pipefish samples with satisfactory results.  相似文献   

8.
A novel carbon paste electrode modified with graphene nanosheets and an ionic liquid (n-hexyl-3-methylimidazolium hexafluoro phosphate) was fabricated and used for the electrochemical study of mangiferin for the first time. This modified electrode offers a considerable improvement in voltammetric sensitivity toward mangiferin, compared to the bare electrode. Square wave voltammetry (SWV) exhibits a linear dynamic range from 5.0?×?10?8 to 2.0?×?10?4 M and a detection limit of 20.0 nM for mangiferin. Finally, the proposed method was successfully applied to the determination of mangiferin in real samples such as serum and urine.  相似文献   

9.
In green approaches for electrocatalyst synthesis, sonochemical methods play a powerful role in delivering the abundant surface areas and nano-crystalline properties that are advantageous to electrocatalytic detection. In this article, we proposed the sphere-like and perovskite type of bimetal oxides which are synthesized through an uncomplicated sonochemical procedure. As a yield, the novel calcium titanate (orthorhombic nature) nanoparticles (CaTiO3 NPs) decorated graphene oxide sheets (GOS) were obtained through simple ultrasonic irradiation by a high-intensity ultrasonic probe (Titanium horn; 50 kHz and 60 W). The GOS/CaTiO3 NC were characterized morphologically and chemically through the analytical methods (SEM, XRD, and EDS). Besides, as-prepared nanocomposites were modified on a GCE (glassy carbon electrode) and applied towards electrocatalytic and electrochemical sensing of chemotherapeutic drug flutamide (FD). Notably, FD is a crucial anticancer drug and also a non-steroidal anti-androgen chemical. Mainly, the designed and modified sensor has shown a wide linear range (0.015–1184 µM). A limit of detection was calculated as nanomolar level (5.7 nM) and sensitivity of the electrode is 1.073 μA μM−1 cm−2. The GOS/CaTiO3 modified electrodes have been tested in human blood and urine samples towards anticancer drug detection.  相似文献   

10.
Uzun  Demet  Hasdemir  Erdoğan 《Ionics》2017,23(3):759-765

The selective determination of dopamine (DA) was performed using a glassy carbon (GC) electrode modified with N-(1-H-indole-3yl) methylene thiazole-2-amine (IMT2A). IMT2A was deposited on the GC electrode by cyclic voltammetry. This modified electrode demonstrated an electrocatalytic effect on the oxidation of DA in the presence of uric acid (UA) and ascorbic acid (AA) using differential pulse voltammetry (DPV) method in 0.1 M phosphate buffer solution (PBS) of pH 7. Selective determination was realized in elimination of AA response on the IMT2A-modified electrode. The oxidation peak currents increased linearly with two concentration intervals of DA at pH 7 phosphate buffer. One of them is 0.25–9.15 μM, and the other is 9.15–95.1 μM. The limit of detection (LOD) was found as 0.086 μM. The proposed electrode was applied to the determination of DA in pharmaceutical preparations and human urine sample with satisfactory results.

  相似文献   

11.
The electrochemical behaviors of an emerging pollutant, benzotriazole (BTA), at multiwall carbon nanotubes and Nafion modified glassy carbon electrode (MWNTs-Nafion/GCE) were investigated systematically. The electrochemical reduction of BTA was significantly improved by MWNTs-Nafion compared to bare GCE, ascribed to the excellent adsorption capacity and electrocatalytic activity of MWNTs. BTA presented well-defined reduction peaks only at pH <3.0, suggesting the involvement of lots of protons in the reduction process. Peak potential shifted negatively and peak current decreased significantly with pH increase. BTA showed various UV–Vis absorption spectra in acidic and alkaline mediums. Cathodic peak current increased linearly with square root of sweep rate as well as with the concentration of BTA from 3.0?×?10?6 to 1.6?×?10?4 mol L?1. This suggests a diffusion-controlled and irreversible electrode process. Diffusion coefficient of BTA on MWNTs-Nafion/GCE was obtained as 2.67?×?10?2 cm2 s?1 with four orders of magnitude larger than that on GCE. MWNTs-Nafion/GCE showed a good selectivity between BTA and O2 but poor selectivity between BTA and tolyltriazole.  相似文献   

12.
The silver ions and l-phenylalanine were co-deposited and formed a hybrid membrane on the surface of glassy carbon electrode by cyclic voltammetry. The membrane had good properties for catalyzing the redox of catecholamine neurotransmitters, including epinephrine (EP), norepinephrine (NE), and dopamine (DA). The electrochemical behaviors of these neurotransmitters were studied on this modified electrode. and therefore, an assay for each of them is set up and the detection limits for EP, NE, and DA are 7.2?×?10?9, 6.4?×?10?9, and 8.5?×?10?9 mol L?1, respectively. The proposed method can effectively eliminate the interference of the ascorbic acid and uric acid. The conditions which influenced the analyses were optimized. Using this method to determine the content of EP, NE, and DA in injections, the results were satisfactory.  相似文献   

13.
A novel carbon paste electrode modified with carbon nanotubes and 5-amino-2′-ethyl -biphenyl-2-ol was fabricated. The electrochemical study of the modified electrode, as well as its efficiency for electrocatalytic oxidation of ascorbic acid (AA), is described. The electrode was employed to study the electrocatalytic oxidation of AA, using cyclic voltammetry, chronoamperometry, and square-wave voltammetry (SWV) as diagnostic techniques. It has been found that the oxidation of AA at the surface of modified electrode occurs at a potential of about 250 mV less positive than that of an unmodified carbon paste electrode. SWV exhibits a linear dynamic range from 2.0?×?10?7 to 5.0?×?10?4 M and a detection limit of 1.0?×?10?7 M for AA. In addition, this modified electrode was used for simultaneous determination of AA, acetaminophen (AC), and tryptophan (TRP). Finally, the modified electrode was used for determination of AA, AC, and TRP in pharmaceutical products.  相似文献   

14.
Gold colloidal nanoparticles (AuNps), synthesized by gold chloride hydrate (HAuCl4) chemical reduction were used to realize a modified glassy carbon electrode (GCE). Different shapes and sizes were observed, varying the molar ratio of HAuCl4 and polyvinylpyrrolidone (PVP). The electrochemical behaviour of different neurotransmitters and molecules of biological interest (dopamine, caffeic acid, catechol, uric acid, epinephrine and serotonin) were investigated by cyclic voltammetry (CV) at the AuNps modified GCE and a dependence of the electrochemical response on the size and the shape of the particles was observed. The electrochemical responses were stable during time with a generic decreasing of the peak current after 10 days ranging from 5–10% for catechol, uric acid and serotonine to 10–15% for the other analytes. A study on the electrochemical interface of modified electrodes was also carried out by means of electrochemical impedance spectroscopy (EIS).  相似文献   

15.
The electrochemical behavior of Hg2+ was investigated in poly(Eriochrome Black T)-modified carbon paste electrode (CPE) using cyclic voltammetry (CV). Poly(Eriochrome Black T) was prepared in an alkaline medium on the surface of the CPE using a solution of Eriochrome Black T with the CV technique. The electrochemical impedance study revealed a better charge transfer kinetics at the modified electrode. The effects of variation of the experimental conditions, such as the concentration of electrolytes, pH, deposition time, and the deposition potential, which maximize current efficiency were studied. The optimum response of Hg2+ was observed in 1.0 M KCl solution. The differential pulse anodic stripping voltammetric technique was employed successfully to detect Hg2+, which gave a good linear response at low concentration levels of Hg2+. The detection limit was found to be 2.2?×?10?10 M (S/N?=?3), which is comparable with that achieved in multiwall carbon nanotube-modified electrode. The remarkable electroanalytical performance of the modified electrode makes it amenable to employ it successfully as an electrochemical sensor for the determination of hazardous pollutant Hg2+ in environmental samples.  相似文献   

16.
The innovation of novel and proficient nanostructured materials for the precise level determination of pharmaceuticals in biological fluids is quite crucial to the researchers. With this in mind, we synthesized iron molybdate nanoplates (Fe2(MoO4)3; FeMo NPs) via simple ultrasonic-assisted technique (70 kHz with a power of 100 W). The FeMo NPs were used as the efficient electrocatalyst for electrochemical oxidation of first-generation antihistamine drug- Promethazine hydrochloride (PMH). The as-synthesized FeMo NPs were characterized and confirmed by various characterization techniques such as XRD, Raman, FT-IR, FE-SEM, EDX and Elemental mapping analysis and electron impedance spectroscopy (EIS). In addition, the electrochemical characteristic features of FeMo NPs were scrutinized by electrochemical techniques like cyclic voltammetry (CV) and differential pulse voltammetry technique (DPV). Interestingly, the developed FeMo NPs modified glassy carbon electrode (FeMo NPs/GCE) discloses higher peak current with lesser anodic potential on comparing to bare GCE including wider linear range (0.01–68.65 µM), lower detection limit (0.01 µM) and greater sensitivity (0.97 µAµM-1cm−2). Moreover, the as-synthesized FeMo NPs applied for selectivity, reproducibility, repeatability and storage ability to investigate the practical viability. In the presence of interfering species like cationic, anionic and biological samples, the oxidation peak current response doesn’t cause any variation results disclose good selectivity towards the detection of PMH. Additionally, the practical feasibility of the FeMo NPs/GCE was tested by real samples like, commercial tablet (Phenergan 25 mg Tablets) and lake water samples which give satisfactory recovery results. All the above consequences made clear that the proposed sensor FeMo NPs/GCE exhibits excellent electrochemical behavior for electrochemical determination towards oxidation of antihistamine drug PMH.  相似文献   

17.
Zhuo  Kelei  Ma  Xueli  Chen  Yujuan  Wang  Congyue  Li  Aoqi  Yan  Changling 《Ionics》2016,22(10):1947-1955

The molecular imprinting technique is powerful to prepare functional materials with molecular recognition properties. In this work, a potentiometric sensor was fabricated by dispersing molecularly imprinted polymers (MIPs) into plasticized PVC matrix and used for the determination of 1-hexyl-3-methylimidazolium cation ([C6mim]+) in aqueous solution. The MIPs were synthesized by precipitation polymerization using 1-hexyl-3-methylimidazolium chloride ([C6mim]Cl) as the template molecule, methacrylic acid (MAA) and ethylene glycol dimethacrylat (EGDMA) as the functional monomers, and EGDMA also as the cross-linking agent. The as-prepared electrode exhibited a Nernstian response (58.87 ± 0.3 mV per decade) to [C6mim]+ in a concentration range from 1.0 × 10−6 to 0.1 mol kg−1 with a low detection limit of 2.8 × 10−7 mol kg−1, high selectivity, and little pH influence. The as-prepared electrode was used for the detection of the [C6mim]+ in distilled water, tap water, and river water with a good recovery. It was also successfully applied in the determination of mean activity coefficients of [C6mim]Br in fructose + water systems based on the potentiometric method at 298.15 K.

  相似文献   

18.
Under an aid of ultrasonic, tetraoxalyl ethylenediamine melamine resin-coated multiwalled carbon nanotubes were prepared for Ni(II) sensing in aqueous solution. The processes involved the fabrication of tetraoxalyl ethylenediamine melamine resin by one pot way, the coating of tetraoxalyl ethylenediamine melamine resin at multiwalled carbon nanotubes (MWCNTs), and the determination of Ni(II). The present materials were carefully examined by Fourier transform infrared spectroscopy, field emission scanning electron microscope, and electrochemistry techniques. A great deal of amorphous microsphere could be observed for tetraoxalyl ethylenediamine melamine resin with an average diameter of 1.2 μm, and MTE could evenly adhere at the surface of MWCNTs by the ultrasonic. Tetraoxalyl ethylenediamine melamine resin-coated multiwalled carbon nanotube-modified paraffin-impregnated graphite electrode was successfully used for the determination of Ni(II) by differential pulse adsorptive anodic stripping voltammetry. The current responses (?0.3 V) were linearly increased depending on the concentration from 1?×?10?11 to 3?×?10?10 M (i (μA)?=?11.1?+?7.9 c (1?×?10?12 M); R?=?0.9901, 3σ?=?7?×?10?12 M).  相似文献   

19.
In the present work, we report on the synthesis of crump-like nickel manganous oxide nanoparticles decorated partially reduced graphene oxide (NiMnO@pr-GO) nanocomposite through high-intensity ultrasonic bath sonication (ultrasonic frequency = 37 kHz and power = 150 W). The NiMnO@pr-GO nanocomposite modified glassy carbon electrode (GCE) was then employed for the electrochemical reduction of detrimental metronidazole (MNZ). The crystalline phase and formation of the NiMnO@pr-GO nanocomposites were confirmed by X-ray diffraction and other spectroscopic techniques. The cyclic voltammetry results demonstrate that this NiMnO@pr-GO nanocomposite modified GCE has a lower reduction potential and higher catalytic activity towards MNZ than do NiMnO and GO modified GCEs. Under optimized conditions, the fabricated NiMnO@pr-GO electrode can detect metronidazole over a wide linear range with a lower limit of detection of 90 nM. The sensitivity of the sensor was 1.22 µA µM-1cm−2 and was found to have excellent selectivity and durability for the detection of MNZ.  相似文献   

20.
In this study, poly (vinyl chloride)(PVC) membrane electrodes with/without multi-walled carbon nanotubes (MWCNTs) based on a calix[4]arene derivative for perchlorate ion were described. The influence of membrane composition, pH, conditioning solution on the potentiometric response of the electrodes was investigated. Perchlorate-selective PVC membrane electrode exhibited a slope of 47.8 ± 0.6 mV/pClO4 in the range of 1.0 × 10?7–1.0 × 10?1 mol L?1at pH 4.0 while the coated Pt electrodes with MWCNT-OH, MWCNT-COOH and MWCNT displayed slopes of 46.1 ± 0.7 mV/pClO4 (5.0 × 10?6–1.0 × 10?1 mol L?1), 50.4 ± 1.9 mV/pClO4 (1.0 × 10?6–1.0 × 10?1 mol L?1) and 44.4 ± 0.3 mV/pClO4 (1.0 × 10?5–1.0 × 10?1 mol L?1), respectively. Other response characteristics of these electrodes such as response time, lifetime and detection limit were identified, and the selectivity coefficients towards various anions were calculated by separate solution method. Moreover, the perchlorate-selective electrodes described here were successfully used as an indicator electrode for the determination of perchlorate in real samples such as tap water, river water and human urine by direct calibration method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号