共查询到15条相似文献,搜索用时 62 毫秒
1.
TF 线圈为大型“D”形轮廓, 由高、 中、 低场线圈通过套装和堆叠而成. 需要分别对高中低场线圈进行绝缘处理, 套装后填充高中低场之间的间隙(10 mm~120 mm) , 包绕对地绝缘后, 再对间隙填充层进行绝缘处理. 为了充分验证绕组制造的工艺, 采用一个以中场绕组尺寸的Dummy 绕组进行真空压力浸渍(Vacuum Pressure Impregnation, VPI) 完成线圈绝缘. 针对 VPI 过程中真空环境、 外部压力、 固化温度、 时间控制等方面的技术难点, 完成 TF Dummy 线圈 VPI 系统设计. 采用 CATIA 软件对 Dummy 线圈 VPI 系统进行建模, 合理设计子系统, 有效缩短 VPI过程的时间, 保证绝缘质量. 通过每个子系统的理论分析计算, 更精确地选择 VPI 系统配备的设备型号,CFETR TF Dummy 线圈 VPI 系统的设计和相关工艺的验证对后续 TF 线圈制造至关重要. 相似文献
2.
我国于2019年启动了国家大科学装置聚变堆主机关键系统综合研究设施(CRAFT)的建设,环向场(Toroidal Field, TF)线圈是聚变堆主机关键系统综合研究设施的重要组成部分.TF线圈绝缘制造采用真空压力浸渍工艺实现,因TF线圈体量巨大,为使线圈绝缘固化时温度均匀,减少绝缘树脂固化热应力,拟采用导体电流加热的方式进行加热.TF中场线圈有三个内部接头,因此需要同时知道导体和内部接头电阻与温度之间的关系,以防内部接头局部过热,导致绝缘固化失败.本文将中场内部接头样件加热到线圈绝缘工艺温度,用直流四线法测量导体和内部接头在不同温度下的电阻,得到在303~443 K温度区间内导体和内部接头电阻-温度关系式.发现相同温度下,导体电阻大于内部接头电阻,同时分析了内部接头铜套以及铬层对电阻的影响.并根据测得的电阻-温度关系式,可以得到在不同温度下超导缆及内部接头产生焦耳热的能力,从而为超导线圈绝缘固化温度控制提供重要的参考依据. 相似文献
3.
4.
聚变堆主机关键系统综合研究设施(CRAFT)是为了探索与建设中国聚变工程试验堆(CFETR)关键技术和原型系统的大科学装置.环向场(Toroidal Field, TF)线圈是CRAFT系统的重要组成部分,旨在研制出用于CFETR环向场原型线圈.本文基于弹塑性力学理论,通过建立TF导体连续弯绕成形有限元分析模型,对TF导体弯曲成形过程进行力学仿真,获得了TF导体在成形过程中的应力、应变和成形力等力学参数,预测了TF线圈绕制过程导体截面变形、回弹、应力和应变情况,并采用TF导体开展了弯曲成形验证试验,为TF线圈的精密绕制和成形设备的工程设计提供了可靠的依据. 相似文献
5.
6.
对TF线圈馈线系统做了地震响应分析。利用ANSYS有限元软件对一个TF线圈馈线系统进行了模态分析与响应谱分析,得到了在地震载荷下的峰值响应(应力和位移)。最后,根据 ITER 磁体结构设计标准,对系统的最大Tresca应力进行了评估。结果表明,TF线圈馈线系统满足SC1抗震等级的要求。 相似文献
7.
8.
对TF线圈馈线系统做了地震响应分析。利用ANSYS有限元软件对一个TF线圈馈线系统进行了模态分析与响应谱分析,得到了在地震载荷下的峰值响应(应力和位移)。最后,根据ITER磁体结构设计标准,对系统的最大Tresca应力进行了评估。结果表明,TF线圈馈线系统满足SC1抗震等级的要求。 相似文献
9.
10.
在中国聚变工程试验堆(CFETR)的概念设计阶段,为了将来正确设计和顺利加工其中心螺线管(CS)线圈,设计了一个由Nb3Sn内线圈和NbTi外线圈组成的模型线圈。采用线电流模型和后期数据处理的方法对其磁场做了精确计算,解决了线电流模型不能计算导线内部磁场的问题。在此基础上计算了线圈的电感和电磁应力等参数。 相似文献
11.
聚变堆主机关键系统综合研究设施(CRAFT)超导磁体电源兼具大电流稳态运行、高功率脉冲运行和瞬态故障抑制能力的需求。换流变压器的短路阻抗与超导磁体电源的特性密切相关。为了优化超导磁体电源的性能,基于交直流系统的参数和换流变压器的等效电路模型,研究了换流变压器短路阻抗与超导磁体电源的输出电压、谐波电流、短路故障电流和无功损耗的关系。短路阻抗越小,超导磁体电源的额定输出电压越高,无功损耗越小,这些特性对CRAFT超导磁体电源的性能有利,但是短路故障电流和谐波电流增加,影响电源的短路故障抑制能力和谐波特性。在CRAFT超导磁体电源换流变压器短路阻抗设计时,首先短路阻抗必须满足直流电源的额定输出电压和故障电流抑制能力,其次,由于CRAFT超导磁体电源是多相变流器,仅产生高次特征谐波电流,含量少便于抑制,因而尽量选择较小的短路阻抗。 相似文献
12.
13.
14.
15.
目前厂家对浸漆绕组线圈的干燥主要使用传统热风循环的方法,而且关于浸漆绕组线圈的干燥工艺研究尚不充分;针对传统绕组浸漆线圈干燥时间长,干燥所得线圈表面绝缘性能欠佳等问题,设计研发了一套自动化程度较高的绕组浸漆线圈真空干燥系统;该系统主要由真空单元、温度控制单元、电气控制单元、人机交互单元等部分组成;通过将浸漆线圈放置于真空环境中,对浸漆线圈进行通电的方式来加热干燥,以可编程逻辑控制器为核心,利用PLC的PWM输出功能控制加热,同时提出了浸漆线圈干燥的均匀设计实验方案,得出了最佳实验干燥工艺,最后通过对实验数据的回归分析得出了各实验指标之间的关系及显著性影响;实验结果表明:该系统不仅缩短了浸漆线圈的干燥时间,而且使浸漆线圈表面的绝缘性能有了明显的提高。 相似文献