首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
INDO molecular orbital calculations have been carried out to estimate the barrier heights to the 1,2-migration of fluorine and hydrogen atoms in 1,2-difluoroethyl and 1,1,2-trifluoroethyl radicals. The calculated results suggest that (1) the 1,2-fluorine atom migration through a fluorine atom bridging intermediate will occur more readily than the 1,2-hydrogen atom migration through a hydrogen atom bridging intermediate in both radicals, (2) a fluorine atom will undergo 1,2-migration in 1,1,2-trifluoroethyl radical more readily than in 1,2-difluoroethyl radical. The enthalpy change accompanied by the 1,2-fluorine atom migration in 1,1,2-trifluoroethyl radical was estimated to be 1.7 kcal/mol, which was in good agreement with the value(1.6 kcal/mol) obtained experimentally.  相似文献   

2.
The structure as well as several unimolecular reaction pathways of the 3-chloro-2-butyl radical 1 have been studied at several different theoretical levels (B3LYP/aug-cc-pVDZ, BHLYP/aug-cc-pVDZ, G3(ROMP2)B3). The symmetrically chlorine-bridged structure is a transition state at all levels of theory and the most favorable ground state structure is the unbridged beta-chloroalkyl radical. Reaction barriers for the 1,2-chlorine migration process are higher than those for rotation around the central C-C bond. 1,2-migration of the chlorine atom is accompanied by an increase in chlorine negative charge as well as chlorine spin density. This hybrid homo-/heterolytic process is well known from rearrangement reactions in beta-(dialkoxyphosphoryloxy)alkyl radicals and suggests that chlorine migration can be influenced by polar substituent effects.  相似文献   

3.
Protonated peptides containing histidine or arginine residues and a free carboxyl group (His-Ala-Ile, His-Ala-Leu, Ala-His-Leu, Ala-Ala-His-Ala-Leu, His-Ala-Ala-Ala-Leu, and Arg-Ala-Ile) form stable anions upon collisional double electron transfer from Cs atoms at 50 keV kinetic energies. This unusual behavior is explained by hidden rearrangements occurring in peptide radical intermediates formed by transfer of the first electron. The rearrangements occur on a approximately 120 ns time scale determined by the radical flight time. Analysis of the conformational space for (His-Ala-Ile + H)(+) precursor cations identified two major conformer groups, 1a(+)-1m(+) and 5a(+)-5h(+) , that differed in their H-bonding patterns and were calculated to collectively account for 39% and 60%, respectively, of the gas-phase ions. One-electron reduction in 1a(+) and 5a(+) triggers exothermic hydrogen atom migration from the terminal COOH group onto the His imidazole ring, forming imidazoline radical intermediates. The intermediate from 5a is characterized by its charge and spin distribution as a novel cation radical-COO(-) salt bridge. The intermediate from 1a undergoes spontaneous isomerization by imidazoline N-H migration, re-forming the COOH group and accomplishing exothermic isomerization of the initial (3H)-imidazole radical to a (2H)-imidazole radical. An analogous unimolecular isomerization in simple imidazole and histidine radicals requires activation energies of 150 kJ mol(-1), and its occurrence in 1a and 5a is due to the promoting effect of the proximate COOH group. The rearrangement is substantially reduced in Ala-Leu-His due to an unfavorable spatial orientation of the imidazole and COOH groups and precluded in the absence of a free carboxyl group in His-Ala-Leu amide. In contrast to His-Ala-Ile and Arg-Ala-Ile, protonated Lys-Ala-Ile does not produce stable anions upon double electron transfer. The radical trapping properties of histidine residues are discussed.  相似文献   

4.
Arginine amide radicals are generated by femtosecond electron transfer to protonated arginine amide cations in the gas phase. A fraction of the arginine radicals formed (2-amino-5-dihydroguanid-1'-yl-pentanamide, 1H) is stable on the 6.7 micros time scale and is detected after collisional reionization. The main dissociation of 1H is loss of a guanidine molecule from the side chain followed by consecutive dissociations of the 2-aminopentanamid-5-yl radical intermediate. Intramolecular hydrogen atom transfer from the guanidinium group onto the amide group is not observed. These results are explained by ab initio and density functional theory calculations of dissociation and transition state energies. Loss of guanidine from 1H is calculated to require a transition state energy of 68 kJ mol(-)(1), which is substantially lower than that for hydrogen atom migration from the guanidine group. The loss of guanidine competes with the reverse migration of the arginine alpha-hydrogen atom onto the guanidyl radical. RRKM calculations of dissociation kinetics predict the loss of guanidine to account for >95% of 1H dissociations. The anomalous behavior of protonated arginine amide upon electron transfer provides an insight into electron capture and transfer dissociations of peptide cations containing arginine residues as charge carriers. The absence of efficient hydrogen atom transfer from charge-reduced arginine onto sterically proximate amide group blocks one of the current mechanisms for electron capture dissociation. Conversely, charge-reduced guanidine groups in arginine residues may function as radical traps and induce side-chain dissociations. In light of the current findings, backbone dissociations in arginine-containing peptides are predicted to involve excited electronic states and proceed by the amide superbase mechanism that involves electron capture in an amide pi* orbital, which is stabilized by through-space coulomb interaction with the remote charge carriers.  相似文献   

5.
A system with coupled catalytic cycles is described that allows radical reduction by catalyzed hydrogen atom transfer (CHAT) from transition metal hydrides. These intermediates are generated through H2 activation. Radical generation is carried out by titanocene catalyzed electron transfer to epoxides. The reaction provides a novel entry into the atom-economical reduction of radicals that has long been considered as a critical issue for the industrial application of radical chemistry.  相似文献   

6.
Low-temperature (-78 degrees C) ozonation of 1,2-diphenylhydrazine in various oxygen bases as solvents (acetone-d(6), methyl acetate, tert-butyl methyl ether) produced hydrogen trioxide (HOOOH), 1,2-diphenyldiazene, 1,2-diphenyldiazene-N-oxide, and hydrogen peroxide. Ozonation of 1,2-dimethylhydrazine produced besides HOOOH, 1,2-dimethyldiazene, 1,2-dimethyldiazene-N-oxide and hydrogen peroxide, also formic acid and nitromethane. Kinetic and activation parameters for the decomposition of the HOOOH produced in this way, and identified by (1)H, (2)H, and (17)O NMR spectroscopy, are in agreement with our previous proposal that water participates in this reaction as a bifunctional catalyst in a polar decomposition process to produce water and singlet oxygen (O(2), (1)delta(g)). The possibility that hydrogen peroxide is, besides water, also involved in the decomposition of hydrogen trioxide is also considered. The half-life of HOOOH at room temperature (20 degrees C) is 16 +/- 1 min in all solvents investigated. Using a variety of DFT methods (restricted, broken-symmetry unrestricted, self-interaction corrected) in connection with the B3LYP functional, a stepwise mechanism involving the hydrotrioxyl (HOOO(*)) radical is proposed for the ozonation of hydrazines (RNHNHR, R = H, Ph, Me) that involves the abstraction of the N-hydrogen atom by ozone to form a radical pair, RNNHR(*) (*)OOOH. The hydrotrioxyl radical can then either abstract the remaining N(H) hydrogen atom from the RNNHR(*) radical to form the corresponding diazene (RN=NR), or recombines with RNNHR(*) in a solvent cage to form the hydrotrioxide, RN(OOOH)NHR. The decomposition of these very labile hydrotrioxides involves the homolytic scission of the RO-OOH bond with subsequent "in cage" formation of the diazene-N-oxide and hydrogen peroxide. Although 1,2-diphenyldiazene is unreactive toward ozone under conditions investigated, 1,2-dimethyldiazene reacts with relative ease to yield 1,2-dimethyldiazene-N-oxide and singlet oxygen (O(2), (1)delta(g)). The subsequent reaction sequence between these two components to yield nitromethane as the final product is discussed. The formation of formic acid and nitromethane in the ozonolysis of 1,2-dimethylhydrazine is explained as being due to the abstraction of a methyl H atom of the CH(3)NNHCH(3)(*) radical by HOOO(*) in the solvent cage. The possible mechanism of the reaction of the initially formed formaldehyde methylhydrazone (and HOOOH) with ozone/oxygen mixtures to produce formic acid and nitromethane is also discussed.  相似文献   

7.
Heme catalases prevent cells from oxidative damage by decomposing hydrogen peroxide into water and molecular oxygen. Here we investigate the factors that give rise to an undesirable side reaction competing with normal catalase activity, the migration of a radical from the heme active site to the protein in the principal reaction intermediate compound I (Cpd I). Recently, it has been proposed that this electron transfer reaction takes place in Cpd I of Helicobacter pylori catalase (HPC), but not in Cpd I of Penicillium vitale catalase (PVC), where the oxidation equivalent remains located on the heme active site. Unraveling the factors determining the different radical locations could help engineer enzymes with enhanced catalase activity for detection or removal of hydrogen peroxide. Using quantum mechanics/molecular mechanics metadynamics simulations, we show that radical migration in HPC is facilitated by the large driving force (-0.65 eV) of the subsequent proton transfer from a histidine residue to the ferryl oxygen atom of reduced Cpd I. The corresponding free energy in PVC is significantly smaller (-0.19 eV) and, as we argue, not sufficiently high to support radical migration. Our results suggest that the energetics of oxoferryl protonation is a key factor regulating radical migration in catalases and possibly also in hydroperoxidases.  相似文献   

8.
Chemical reduction of a hydroxyphenyl‐substituted borane triggers a sequential electron‐ and intramolecular hydrogen‐atom‐transfer process to afford a hydridoborate phenoxide dianion. On the other hand, hydrogen‐atom abstraction of the borane leads to the isolation of a neutral borylated phenoxyl radical, which can be transformed to the corresponding benzoquinone borataalkene derivative by reduction with cobaltocene.  相似文献   

9.
Radicals formed by electron transfer to protonated arginine have been predicted by theory to undergo an inverse migration of the hydrogen atom from the C(alpha) position to the guanidine carbon atom. Experiments are reported here that confirm that a fraction of arginine and arginine amide radicals undergo such an inverse hydrogen migration. The rearranged arginine and arginine amide C(alpha) radicals are detected as stable anions after charge inversion by collisions with Cs atoms of precursor cations at 3 and 50 keV kinetic energies. RRKM calculations on the B3-PMP2/aug-cc-pVTZ potential energy surface indicate that arginine radicals undergo rapid rotations of the side chain to reach conformations suitable for C(alpha)-H transfer, which is calculated to be fast (k > 10(9) s(-1)) in radicals formed by electron transfer. By contrast, H-atom transfer from the guanidine group onto the carboxyl or amide C=O groups is >50 times slower than the C(alpha)-H atom migration. The guanidine group in arginine radicals is predicted to be a poor hydrogen-atom donor but a good H-atom acceptor and thus can be viewed as a radical trap. This property can explain the frequent observation of nondissociating cation radicals in electron capture and electron transfer mass spectra of arginine-containing peptides.  相似文献   

10.
芳基二氢萘类衍生物是许多生物活性的天然产物以及药物的常见结构单元,其合成一直都受到化学家们的关注.传统的1,2-二氢-1-芳基萘骨架化合物的构筑大都需要进行底物的预官能团化,在高温条件下进行,且产物的选择性较差,因此发展一种简单温和的制备方法很有必要.最近兴起的可见光催化因具有条件温和、环境友好等特点而成为了合成化学家的研究热点.近期研究发现,在可见光作用下利用吖啶光敏剂的强氧化能力,可以实现苯乙烯的加成.但此类反应需要当量的氧化剂或氢原子转移试剂,容易导致苯乙烯的二聚环合产物的进一步氧化或还原.我们在前期发展的"放氢交叉偶联"反应的基础上,利用吖啶光催化和钴肟催化的协同作用,实现了苯乙烯的放氢二聚反应,在室温下高效构筑了1,2-二氢-1-芳基萘骨架,反应条件温和,底物脱除的电子和质子在钴肟催化剂作用下以氢气的形式释放,反应具有中等及以上的收率.本文以苯乙烯为模型底物,吖啶为光敏剂,钴肟配合物为质子还原催化剂,在乙腈溶剂中,蓝色LED灯下光照24 h可以获得56%的产率,对于其它的光敏剂如fac-Ⅰr(ppy)3等则不能催化该反应.通过催化剂种类及用量筛选表明,7 mol%的Co(dmgH_2)pyCl配合物具有最好的反应效果,可以获得72%的收率.控制实验表明,光敏剂、钴肟催化剂和光照都是必须的.通过底物拓展我们发现,烷基、卤素等不同取代基的苯乙烯类化合物均可以获得较好的收率,不同苯乙烯之间也可以发生交叉反应.随后,我们进一步通过光谱和中间体捕获实验对反应机理进行了研究.自由基捕获实验说明反应过程可能涉及自由基历程;光谱淬灭实验表明苯乙烯和Co(dmgH_2)pyCl均可淬灭吖啶的发光,但苯乙烯淬灭吖啶的程度远大于Co(dmgH_2)pyCl淬灭吖啶的程度.在反应时苯乙烯的浓度远大于催化剂的溶度,因此,我们认为激发态吖啶首先与苯乙烯发生反应;可见光照射反应体系1 min后在440–500和550–650 nm处观察到明显的Co~Ⅱ和Co~Ⅰ的吸收峰.基于以上实验结果,我们提出了可能的催化循环:吖啶受光激发到达激发态后,首先与底物苯乙烯发生单电子转移生成苯乙烯正离子自由基和吖啶阴离子自由基Acr~·-Mes,Acr~·-Mes还原Co(dmgH_2)pyCl生成Co ~Ⅱ中间体,从而回到基态完成光催化循环.苯乙烯正离子自由基与另一分子苯乙烯加成环合,进而通过芳构化生成自由基中间体,再与Co Ⅱ作用生成目标产物1,2-二氢-1-芳基萘和Co~Ⅰ,Co~Ⅰ通过结合体系中的质子进而释放出氢气回到Co~ Ⅲ从而完成钴肟催化循环.  相似文献   

11.
A systematic calculation of the potential curves or surfaces for 1,2-shift has been realized by using MNDO or other models in MOPAC programs. By referring to the previous authors' viewpoints, the 1,2-shift can be divided into two categories. 1,2-electron-deficient shift is that the electronic configuration of the atom which accepts the migrating group is a cation or an electron- deficient atom, and 1,2-anion shift is the one that the accepted atom of the migration group is a negative ion. In terms of the experimental facts and the calculation of the potential surfaces, in electron-deficient shift such as Beckmann or Baeyer-Villiger rearrangement, the migration occurs through a transition complex formed between the p -bond and the cation or electron-deficient migrating group, but in anion shift such as Wittig or Stevens rearrangement, the electron pair in p -orbit excites at first to p * orbit, and then the migration occurs through the new formed complex between the anion migration group and the vacant p orbit. The above mechanisms explain reasonably the intramolecular properties, the configuration retentions of the migration group, and the corresponding migratory aptitudes of the two type 1,2-shifts. The partial and less important free radical reaction of 1,2-anion shift has been explained by the p -complex mechanism too.  相似文献   

12.
A system with coupled catalytic cycles is described that allows radical reduction by hydrogen atom abstraction from rhodium hydrides. These intermediates are generated from H2 activation by Wilkinson's catalyst. Radical generation is carried out by titanocene-catalyzed electron transfer to epoxides.  相似文献   

13.
A computational study, using density functional theory calibrated against higher-level methods, has been undertaken to evaluate tertiary amines whose radical cations might lose hydrogen atoms from positions other than the alpha carbons. The purpose was to find photochemically activated reducing agents for carbon dioxide that could be regenerated in a separate photochemical reaction. The calculations have revealed two reactions that might be suitable for this purpose. In one, the nitrogen of the radical cation makes a bond to a remote carbon with simultaneous displacement of a hydrogen atom. In the other, a remote hydrogen atom is transferred to the nitrogen, thereby creating a distonic radical cation that can lose a hydrogen atom beta to the radical site. The latter reaction is found to be particularly favorable since it apparently involves a surface crossing that allows the amine radical cation and CO2 radical anion to transform smoothly to a ground-state formate ion and an alkene. A number of structural motifs are investigated for the amines. The lower ionization potential of aromatic amines, compared to their aliphatic analogues, is desirable in that it could permit the use of longer wavelength light to drive the reaction. However, a thermochemical cycle shows that the reduction in ionization potential must be matched by an increase in proton affinity of the amine if the intramolecular hydrogen transfer is to be exothermic. Most aromatic amines do not satisfy this criterion and, hence, would have to rely on the displacement reaction for hydrogen-atom release if they were to be used as renewable reagents for CO2 reduction. Examples of specific aromatic and aliphatic tertiary amines that should be suitable for the purpose are presented, and their relative merits and weaknesses are discussed.  相似文献   

14.
D. Leffort  J.Y. Nedelec 《Tetrahedron》1982,38(17):2681-2685
In this paper we analyse the influence of a phenyl substituent on the relative rates of the 1–5 and 1–6 intramolecular hydrogen transfers. Compared to the abstraction of an aliphatic H atom, the activation energy for the abstraction of a benzylic H atom is smaller. The effect is nevertheless more important with a primary alkyl radical (1,3 kcal/mole) than with an alkoxy radical (0,9 kcal/mole. This can be analysed in terms of a polar effect. In addition, the size of the effect is too small to make a short distance transfer of a H-atom feasible; this is in keeping with the statement that H atom migration requires a linear transition state.  相似文献   

15.
Lewis acids can efficiently promote free radical atom transfer reactions of an oxazolidinone imide substrate, 1, derived from alpha-bromo acetic acid. Thus, 1 undergoes a radical chain addition to 1-hexene giving the atom transfer addition compound, 6, in the presence of scandium or ytterbium triflate in 1,2-dichloroethane or a cosolvent mixture of 1/9 THF/dichloromethane. In 1,2-dichloroethane the solution is heterogeneous, while the cosolvent mixture gives a homogeneous solution, even at temperatures of -78 degrees C. Competition experiments were carried out in both solvent systems with added carbon tetrachloride to study how Lewis acid affected the product distribution. In the presence of carbon tetrachloride, chloride 7 is formed in addition to 6 and the ratio of these two products depends on the amount of Lewis acid present. In the presence of ytterbium triflate, in the cosolvent system, the reaction rate of bromine atom transfer was enhanced up to 400-fold compared to the reaction without added Lewis acid. Significant rate enhancements were also obtained in the solvent 1,2-dichloroethane, although the analysis of the system is complicated by the heterogeneous nature of the medium. Computation of C-Br bond dissociation energies (BDE) of the complexed and uncomplexed oxazolidinone bromide suggest that complexation lowers the BDE due to the effect of the strong electron-withdrawing group on the C-Br bond dipole.  相似文献   

16.
Some regularities of radical alternating copolymerization of maleic anhydride with allyl chloroacetate are studied. The formation of donor–acceptor complexes between comonomers with complexing constant Kc = 0.052 L/mol is found using 1H NMR spectroscopy. The kinetic parameters for this copolymerization reaction are found and the quantitative contribution of monomer complexes to chain-growth radical reactions is calculated. It is shown that either a “free-monomer” mechanism (dilute solutions) or a “mixed” mechanism (concentrated solutions) prevails for chain growth during radical copolymerization depending on total monomer concentration. It is found that inhibition of degradative chain transfer in the course of the reaction studied takes place owing to the presence of α-chlorine atom in the allyl chloracetate molecule and formation of charge transfer complex.  相似文献   

17.
High-level ab initio electronic structure calculations have been carried out with respect to the intermolecular hydrogen-transfer reaction HCOOH+.OH-->HCOO.+H(2)O and the intramolecular hydrogen-transfer reaction .OOCH2OH-->HOOCH(2)O.. In both cases we found that the hydrogen atom transfer can take place via two different transition structures. The lowest energy transition structure involves a proton transfer coupled to an electron transfer from the ROH species to the radical, whereas the higher energy transition structure corresponds to the conventional radical hydrogen atom abstraction. An analysis of the atomic spin population, computed within the framework of the topological theory of atoms in molecules, suggests that the triplet repulsion between the unpaired electrons located on the oxygen atoms that undergo hydrogen exchange must be much higher in the transition structure for the radical hydrogen abstraction than that for the proton-coupled electron-transfer mechanism. It is suggested that, in the gas phase, hydrogen atom transfer from the OH group to oxygen-centered radicals occurs by the proton-coupled electron-transfer mechanism when this pathway is accessible.  相似文献   

18.
A metal-free generation of carbanion nucleophiles is of prime importance in organic synthesis. Herein we report a photocatalytic approach to the Corey–Seebach reaction. The presented method operates under mild redox-neutral and base-free conditions giving the desired product with high functional group tolerance. The reaction is enabled by the combination of photo- and hydrogen atom transfer (HAT) catalysis. This catalytic merger allows a C−H to carbanion activation by the abstraction of a hydrogen atom followed by radical reduction. The generated nucleophilic intermediate is then capable of adding to carbonyl electrophiles. The obtained dithiane can be easily converted to the valuable α-hydroxy carbonyl in a subsequent step. The proposed reaction mechanism is supported by emission quenching, radical–radical homocoupling and deuterium labeling studies as well as by calculated redox-potentials and bond strengths.  相似文献   

19.
8-羟基鸟嘌呤自由基的开环反应机理   总被引:2,自引:1,他引:1  
使用经实验校准的B3LYP/DZP++方法研究了8-羟基鸟嘌呤自由基的开环反应机理. 计算结果表明, 该反应先后历经C8—N9键的断裂、羟基H原子向N7原子转移两个步骤完成, 转移中的H原子具有阳离子的特征. 当没有水存在时, 羟基H原子的转移反应需经历一个四元环的过渡态, 具有较高的活化能, 反应较困难. 但如果有水分子存在, 羟基H原子的转移步骤将经历一个低活化能的六元环过渡态, 使整个8-羟基鸟嘌呤自由基的开环反应可以在较温和的条件下顺利完成. 在无水催化时, 羟基H转移是反应的速率控制步骤; 而有水催化时, 反应的速率由C8—N9键的断裂步骤控制.  相似文献   

20.
Flavin-dependent ‘ene’-reductases (EREDs) are highly selective catalysts for the asymmetric reduction of activated alkenes. This function is, however, limited to enones, enoates, and nitroalkenes using the native hydride transfer mechanism. Here we demonstrate that EREDs can reduce vinyl pyridines when irradiated with visible light in the presence of a photoredox catalyst. Experimental evidence suggests the reaction proceeds via a radical mechanism where the vinyl pyridine is reduced to the corresponding neutral benzylic radical in solution. DFT calculations reveal this radical to be “dynamically stable”, suggesting it is sufficiently long-lived to diffuse into the enzyme active site for stereoselective hydrogen atom transfer. This reduction mechanism is distinct from the native one, highlighting the opportunity to expand the synthetic capabilities of existing enzyme platforms by exploiting new mechanistic models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号