共查询到19条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
NdFeB 稀土永磁材料阻氢涂层的制备 总被引:2,自引:1,他引:2
从NdFeB稀土永磁材料阻氢的角度出发,对NdFeB阻氢涂层的制备进行了研究。利用厚膜烧结方法和浸涂法在NdFeB磁体表面涂覆Ag/聚合物复合涂层作为NdFeB磁体的阻氢涂层,高压充氢实验结果表明,在10MPa,25 ℃的氢环境中,粘结NdFeB磁体充氢480min未粉碎,最高可达600min,烧结NdFeB磁体充氢180min未粉碎,最高可达280min。NdFeB磁体涂层Ag/聚合物复合涂层前后的磁性能几乎没有变化。 相似文献
5.
6.
7.
巨磁电阻材料与信息存储及其对化学的挑战 总被引:2,自引:0,他引:2
介绍了巨磁电阻材料在信息存储中用于硬盘驱动器读出磁头的巨大应用前景,讨论了当今采用化学方法制备和研究这类材料的进展及存在的问题。 相似文献
8.
阻变型电存储依靠外加电场作用下存储介质的导电性高低差异,即电学双稳态或多稳态来实现数据存取,并具有高容量、高柔韧性、低成本、低能耗、可规模化等优点,为下一代高密度存储技术提供新前景. 除了无机氧化物、碳纳米材料、有机小分子和有机聚合物半导体材料之外,近年来,过渡金属配合物在阻变型电存储方面的应用也引起广泛关注. 本文对迄今为止报道的大部分基于过渡金属配合物的阻变存储材料进行了总结和讨论,主要包括第VⅢ族金属[包括Fe(Ⅱ)、Ru(Ⅱ)、Co(Ⅲ)、Rh(Ⅲ)、Ir(Ⅲ)、Pt(Ⅱ)等配合物]、第IB族和ⅡB族金属[Cu(Ⅱ)、Au(Ⅲ)、Zn(Ⅱ)等配合物]和镧系过渡金属配合物[Eu(Ⅲ)及其它],并对各种配合物的存储行为和存储机理进行了探讨. 过渡金属配合物具有清晰可逆的氧化还原过程,通过改变配体的结构和金属的种类可以很方便地调节材料的前线轨道能级和能隙,利于形成电学双稳态或多稳态,达到二进制或多进制存储的目的,具有潜在应用价值. 相似文献
9.
采用脉冲激光沉积技术在Pt/Ti/SiO2/Si衬底上沉积了非晶Lu2O3薄膜,制作了W和Ta作为顶电极的W/Lu2O3/Pt和Ta/Lu2O3/Pt堆栈结构器件,并运用Keithely4200-SCS测试平台分析了其电阻转变特性。在对器件加载电压后,Ta/Lu2O3/Pt器件未表现出阻变存储特性,然而W/Lu2O3/Pt表现出良好的双极性电阻转变特性,其高低阻态比大于103。经过大于1×104s的读电压,高低阻态的电阻值没有发生明显的变化,表现出良好的数据保持能力。通过对高低阻态的电流电压关系、电阻值与器件面积的关系和电阻值与温度的关系的研究,分析认为导电细丝的形成和破灭机制是导致W/Lu2O3/Pt器件发生电阻转变现象的主要原因。 相似文献
10.
11.
芳砜纶增强的新型摩擦材料研究 总被引:5,自引:0,他引:5
研究了芳砜纶纤维增强新型摩擦材料。采用分步干式开松法解决了芳砜纶的散问题,应用正交设计法优化芳砜纶磨擦材料的配方。研究表明该摩擦材料性能优于半金属摩擦材料和石棉摩擦材料。 相似文献
12.
13.
14.
15.
16.
17.
双阳离子复合改性膨润土的吸附性能与构效关系 总被引:4,自引:0,他引:4
膨润土是一种以蒙脱石为主要成分的天然吸附材料. 本文用2-巯基乙胺盐酸盐(MEA)与十六烷基三甲基溴化铵(HDTMA)复合改性内蒙钙基膨润土(IMB), 制得具有特殊结构与性能的吸附材料MEA-HDTMA-IMB. X射线衍射(XRD)、红外光谱(FT-IR)、热分析(TG-DTA)及比表面积(N2-BET)等结构表征表明: 复合改性膨润土的比表面积和层间距显著增大. 吸附研究发现: MEA-HDTMA-IMB能同时有效吸附混合水溶液中的有机物对硝基苯酚和重金属铜. 复合改性膨润土对水中有机物的吸附机理以分配作用为主, 其吸附能力强于用季铵盐阳离子单一改性的有机膨润土HDTMA-IMB; 对水中重金属的吸附主要为络合反应, 其吸附性能与用巯基铵阳离子单一改性的膨润土MEA-IMB相当. 相似文献
18.
19.
采用一种新策略对Li1.184[Ni0.15Mn0.516Co0.15]O2进行改性,即通过气流破碎、高压均质混合分散和喷雾干燥的方法得到与碳纳米管复合的富锂锰基正极材料(CNT@LMR)。使用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射仪(XRD)和拉曼光谱(Raman)的方法对改性的材料进行了表征,发现碳纳米管导电网络均匀地分布在富锂锰基正极材料的表面,而且在材料内部的一次颗粒之间也有大量的碳纳米管存在。电化学性能测试表明,碳纳米管改性后的富锂锰基正极拥有更好的倍率性能和循环寿命。在5C倍率下经过改性的富锂锰基正极的放电比容量为141.4 mAh·g-1,远高于未改性的富锂锰基正极的放电比容量(76.6 mAh·g-1)和碳纳米管仅作为富锂锰基正极导电剂时的放电比容量(110.7 mAh·g-1)。在1C倍率下循环100次后,碳纳米管改性的富锂锰基正极的容量保持率在87.2%,高于富锂锰基正极(77.8%)。不同循环次数下的电化学阻抗谱表明,均匀分布在富锂锰基正极材料表面的碳纳米管网状结构有效地改善了电极/电极液的界面反应,抑制了电极固体电解质界面(SEI)膜的增厚和减缓了电极的极化。同时,材料内部的碳纳米管导电网络降低了一次颗粒间的内阻并加快了电极的电荷转移过程。 相似文献