首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
In this paper we investigate the behaviour of the solutions of equations ΣI=1n aixi = b, where Σi=1n, ai = 0 and b ≠ 0, with respect to colorings of the set N of positive integers. It turns out that for any b ≠ 0 there exists an 8-coloring of N, admitting no monochromatic solution of x3x2 = x2x1 + b. For this equation, for b odd and 2-colorings, only an odd-even coloring prevents a monochromatic solution. For b even and 2-colorings, always monochromatic solutions can be found, and bounds for the corresponding Rado numbers are given. If one imposes the ordering x1 < x2 < x3, then there exists already a 4-coloring of N, which prevents a monochromatic solution of x3x2 = x2x1 + b, where b ε N.  相似文献   

2.
Let[2+k2n(x1,x3)]u(x1,x2,x3)=−δ(x1,y1δ(x2,y2)δ(x3,y3) in R3+. Assume that u(x1,x2,x3=0,y1,y2=0,y3=0,k) is measured at the plane P {x:x3=0} for all positions of the source on the line y = (y1,y2 = 0,y3 = 0), -∞ < y1 < ∞, and receiver on the plane(x1,x2,x3 − <x1,x2 < ∞, and for low-frequencies 0 < k <k0, k0 > 0 is an arbitrary small wave number. Assume thatn(x1,x3) is an arbitrary bounded piecewise-continuous function. The basic result is: the above low-frequency surface data determinen(x1,x3)uniquely.  相似文献   

3.
For a 1-dependent stationary sequence {Xn} we first show that if u satisfies p1=p1(u)=P(X1>u)0.025 and n>3 is such that 88np131, then
P{max(X1,…,Xn)u}=ν·μn+O{p13(88n(1+124np13)+561)}, n>3,
where
ν=1−p2+2p3−3p4+p12+6p22−6p1p2,μ=(1+p1p2+p3p4+2p12+3p22−5p1p2)−1
with
pk=pk(u)=P{min(X1,…,Xk)>u}, k1
and
|O(x)||x|.
From this result we deduce, for a stationary T-dependent process with a.s. continuous path {Ys}, a similar, in terms of P{max0skTYs<u}, k=1,2 formula for P{max0stYsu}, t>3T and apply this formula to the process Ys=W(s+1)−W(s), s0, where {W(s)} is the Wiener process. We then obtain numerical estimations of the above probabilities.  相似文献   

4.
An up–down permutation P=(p1,p2,…,pn) is a permutation of the integers 1 to n which satisfies constraints specified by a sequence C=(c1,c2,…,cn−1) of U's and D's of length n−1. If ci is U then pi<pi+1 otherwise pi−1>pi. A loopless algorithm is developed for generating all the up–down permutations satisfying any sequence C. Ranking and unranking algorithms are discussed.  相似文献   

5.
Shooting methods are used to obtain solutions of the three-point boundary value problem for the second-order dynamic equation, yΔΔ = f (x, y, yΔ), y(x1) = y1, y(x3) − y(x2) = y2, where f : (a, b)T × 2 → is continuous, x1 < x2 < x3 in (a, b)T, y1, y2 ε , and T is a time scale. It is assumed such solutions are unique when they exist.  相似文献   

6.
Suppose {k, −∞ < k < ∞} is an independent, not necessarily identically distributed sequence of random variables, and {cj}j=0, {dj}j=0 are sequences of real numbers such that Σjc2j < ∞, Σjd2j < ∞. Then, under appropriate moment conditions on {k, −∞ < k < ∞}, yk Σj=0cjk-j, zk Σj=0djk-j exist almost surely and in 4 and the question of Gaussian approximation to S[t]Σ[t]k=1 (yk zkE{yk zk}) becomes of interest. Prior to this work several related central limit theorems and a weak invariance principle were proven under stationary assumptions. In this note, we demonstrate that an almost sure invariance principle for S[t], with error bound sharp enough to imply a weak invariance principle, a functional law of the iterated logarithm, and even upper and lower class results, also exists. Moreover, we remove virtually all constraints on k for “time” k ≤ 0, weaken the stationarity assumptions on {k, −∞ < k < ∞}, and improve the summability conditions on {cj}j=0, {dj}j=0 as compared to the existing weak invariance principle. Applications relevant to this work include normal approximation and almost sure fluctuation results in sample covariances (let dj = cj-m for jm and otherwise 0), quadratic forms, Whittle's and Hosoya's estimates, adaptive filtering and stochastic approximation.  相似文献   

7.
Let X1, X2, … be independent identically distributed random variables. Then, Hsu and Robbins (1947) together with Erdös (1949, 1950) have proved that
,

if and only if E[X21] < ∞ and E[X1] = 0. We prove that there are absolute constants C1, C2 (0, ∞) such that if X1, X2, … are independent identically distributed mean zero random variables, then

c1λ−2 E[X12·1{|X1|λ}]S(λ)C2λ−2 E[X12·1{|X1|λ}]
,

for every λ > 0.  相似文献   


8.
We obtain an explicit expression for the Sobolev-type orthogonal polynomials {Qn} associated with the inner product
, where p(x) = (1 − x)(1 + x)β is the Jacobi weight function, ,β> − 1, A1,B1,A2,B20 and p, q P, the linear space of polynomials with real coefficients. The hypergeometric representation (6F5) and the second-order linear differential equation that such polynomials satisfy are also obtained. The asymptotic behaviour of such polynomials in [−1, 1] is studied. Furthermore, we obtain some estimates for the largest zero of Qn(x). Such a zero is located outside the interval [−1, 1]. We deduce his dependence of the masses. Finally, the WKB analysis for the distribution of zeros is presented.  相似文献   

9.
For each positive integer k we consider the smallest positive integer f(k) (dependent only on k) such that the following holds: Each connected graph G with chromatic number χ(G) = k can be properly vertex colored by k colors so that for each pair of vertices xo and xp in any color class there exist vertices x1, x2, …, xp-1 of the same class with dist(xi, xi+1) f(k) for each i, 0 i p − 1. Thus, the graph is k-colorable with the vertices of each color class placed throughout the graph so that no subset of the class is at a distance > f(k) from the remainder of the class.

We prove that f(k) < 12k when the order of the graph is k(k − 2) + 1.  相似文献   


10.
For an integer n3, the crown Sn0 is defined to be the graph with vertex set {x0,x1,…,xn−1,y0,y1,…,yn−1} and edge set {xiyj: 0i,jn−1, ij}. In this paper we give some sufficient conditions for the edge decomposition of the crown into isomorphic cycles.  相似文献   

11.
Let A = A0A1 be a commutative graded ring such that (i) A0 = k a field, (ii) A = k[A1] and (iii) dimk A1 < ∞. It is well known that the formal power series ∑n = 0 (dimkAnn is of the form (h0 + h1λ + + hsλs)/(1 − λ)dimA with each hiε . We are interested in the sequence (h0, h1,…,hs), called the h-vector of A, when A is a Cohen–Macaulay integral domain. In this paper, after summarizing fundamental results (Section 1), we study h-vectors of certain Gorenstein domains (Section 2) and find some examples of h-vectors arising from integrally closed level domains (Sections 3 and 4).  相似文献   

12.
Jianxiang Li   《Discrete Mathematics》2003,260(1-3):217-221
Let G be a graph of order n, and let a and b be integers such that 1a<b. Let δ(G) be the minimum degree of G. Then we prove that if δ(G)(k−1)a, n(a+b)(k(a+b)−2)/b, and |NG(x1)NG(x2)NG(xk)|an/(a+b) for any independent subset {x1,x2,…,xk} of V(G), where k2, then G has an [a,b]-factor. This result is best possible in some sense.  相似文献   

13.
We prove that to every positive integer n there exists a positive integer h such that the following holds: If S is a set of h elements and ƒ a mapping of the power set of S into such that ƒ(T)T for all T , then there exists a strictly increasing sequence T1Tn of subsets of S such that one of the following three possibilities holds: (a) all sets ƒ(Ti), i= 1,…,n, are equal; (b) for all i=1,…, n, we have ƒ(Ti)=Ti; (c) Ti=ƒ(Ti+1) for all i= 1,…,n-1. This theorem generalizes theorems of the author, Rado, and Leeb. It has applications for subtrees in power sets.  相似文献   

14.
Neighborhood unions and cyclability of graphs   总被引:1,自引:0,他引:1  
A graph G is said to be cyclable if for each orientation of G, there exists a set S of vertices such that reversing all the arcs of with one end in S results in a hamiltonian digraph. Let G be a 3-connected graph of order n36. In this paper, we show that if for any three independent vertices x1, x2 and x3, |N(x1)N(x2)|+|N(x2)N(x3)|+|N(x3)N(x1)|2n+1, then G is cyclable.  相似文献   

15.
Cubic bridgeless graphs with chromatic index four are called uncolorable. We introduce parameters measuring the uncolorability of those graphs and relate them to each other. For k=2,3, let ck be the maximum size of a k-colorable subgraph of a cubic graph G=(V,E). We consider r3=|E|−c3 and . We show that on one side r3 and r2 bound each other, but on the other side that the difference between them can be arbitrarily large. We also compare them to the oddness ω of G, the smallest possible number of odd circuits in a 2-factor of G. We construct cyclically 5-edge connected cubic graphs where r3 and ω are arbitrarily far apart, and show that for each 1c<2 there is a cubic graph such that ωcr3. For k=2,3, let ζk denote the largest fraction of edges that can be k-colored. We give best possible bounds for these parameters, and relate them to each other.  相似文献   

16.
Given an infinite sequence t=(k)k of −1 and +1, we consider the oriented walk defined by Sn(t)=∑k=1n12k. The set of t's whose behaviors satisfy Sn(t)bnτ is considered ( and 0<τ1 being fixed) and its Hausdorff dimension is calculated. A two-dimensional model is also studied. A three-dimensional model is described, but the problem remains open.  相似文献   

17.
Let S be a compact, weak self-similar perfect set based on a system of weak contractions fj, j=1,…,m each of which is characterized by a variable contraction coefficient j(l) as d(fj(x),fj(y)) j(l)d(x,y), d(x,y)<l, l>0. If the relation ∑mj=1j(l0)<1 holds at at least one point l0, then every nonempty compact metric space is a continuous image of the set S.  相似文献   

18.
The following game is considered. The first player can take any number of stones, but not all the stones, from a single pile of stones. After that, each player can take at most n-times as many as the previous one. The player first unable to move loses and his opponent wins. Let f1,f2,… be an initial sequence of stones in increasing order, such that the second player has a winning strategy when play begins from a pile of size fi. It is proved that there exist constants c=c(n) and k0=k0(n) such that fk+1=fk+fkc for all k>k0, and limn→∞ c(n)/(nlogn)=1.  相似文献   

19.
Some results on integral sum graphs   总被引:1,自引:0,他引:1  
Wang Yan  Bolian Liu   《Discrete Mathematics》2001,240(1-3):219-229
Let Z denote the set of all integers. The integral sum graph of a finite subset S of Z is the graph (S,E) with vertex set S and edge set E such that for u,vS, uvE if and only if u+vS. A graph G is called an integral sum graph if it is isomorphic to the integral sum graph of some finite subset S of Z. The integral sum number of a given graph G, denoted by ζ(G), is the smallest number of isolated vertices which when added to G result in an integral sum graph. Let x denote the least integer not less than the real x. In this paper, we (i) determine the value of ζ(KnE(Kr)) for r2n/3−1, (ii) obtain a lower bound for ζ(KnE(Kr)) when 2r<2n/3−1 and n5, showing by construction that the bound is sharp when r=2, and (iii) determine the value of ζ(Kr,r) for r2. These results provide partial solutions to two problems posed by Harary (Discrete Math. 124 (1994) 101–108). Finally, we furnish a counterexample to a result on the sum number of Kr,s given by Hartsfiedl and Smyth (Graphs and Matrices, R. Rees (Ed.), Marcel, Dekker, New York, 1992, pp. 205–211).  相似文献   

20.
A random graph Gn(x) is constructed on independent random points U1,…,Un distributed uniformly on [0,1]d, d1, in which two distinct such points are joined by an edge if the l-distance between them is at most some prescribed value 0<x<1. The connectivity distance cn, the smallest x for which Gn(x) is connected, is shown to satisfy
(1)
For d2, the random graph Gn(x) behaves like a d-dimensional version of the random graphs of Erdös and Rényi, despite the fact that its edges are not independent: cn/dn→1, a.s., as n→∞, where dn is the largest nearest-neighbor link, the smallest x for which Gn(x) has no isolated vertices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号