首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 341 毫秒
1.
Summary The subject of this article is the thermodynamics of perfect elastic-plastic materials undergoing unidimensional, but not necessarily isothermal, deformations. The first and second laws of thermodynamics are employed in a form in which only the following quantities appear: the temperature , the elastic strain e, the plastic strain p, the elastic modulus (gq), the yield strain (gq), the heat capacity (e, p,), the latent elastic heat e(e, p, ), and the latent plastic heat p(e, p, ). Relations among the response functions , , , e, and p are derived, and it is shown that a set of these relations gives a necessary and sufficient condition for compliance with the laws of thermodynamics. Some observations are made about the existence and uniqueness of energy and entropy as functions of state.Dedicated to Clifford Truesdell on the occasion of his 60th birthdayThis research was supported by the U.S. National Science Foundation.  相似文献   

2.
With time domain reflectometry (TDR) two dispersive parameters, the dielectric constant, , and the electrical conductivity, can be measured. Both parameters are nonlinear functions of the volume fractions in soil. Because the volume function of water ( w) can change widely in the same soil, empirical equations have been derived to describe these relations. In this paper, a theoretical model is proposed based upon the theory of dispersive behaviour. This is compared with the empirical equations. The agreement between the empirical and theoretical aproaches was highly significant: the ( w) relation of Topp et al. had a coefficient of determination r 2 = 0.996 and the (u) relation of Smith and Tice, for the unfrozen water content, u, at temperatures below 0°C, had an r 2 = 0.997. To obtain ( w) relations, calibration measurements were performed on two soils: Caledon sand and Guelph silt loam. For both soils, an r 2 = 0.983 was obtained between the theoretical model and the measured values. The correct relations are especially important at low water contents, where the interaction between water molecules and soil particles is strong.  相似文献   

3.
This paper deals with the problem of stress analysis of plates with a circular hole reinforced by flange reinforcing member. The so called flange reinforcing member here means that the reinforcing member is built up by setting shapes or bars with any section shape on both sides of the plates along the edge of the hole. Two cases of external loads are considered. In one case the external loads are stressesσX(∞)Y(∞),and τXY(∞) acting at infinite point of the plate, and in the other the external loads are linear distributed normal stresses. The procedure of solving the problems mentioned above consists of three steps. Firstly, the reinforcing member is taken out from the plates and considered to be a circular bar being solved to determine its deformation under the action of radial force q0(θ) and tangential force t0(θ) which are forces acting upon each other between reinforcing member and plate. Secondly, the displacements of plate with a circular hole under the action of q0(θ) and t0(θ) and external loads are determined. Finally, forces q0(θ) and t0(θ) are obtained by the compatibility of deformations between reinforcing member and plate. Then the internal forces and displacements of reinforcing member and plate are deduced from q0(θ) and t0(θ) obtained.  相似文献   

4.
Nonstationary vibration of a flexible rotating shaft with nonlinear spring characteristics during acceleration through a critical speed of a summed-and-differential harmonic oscillation was investigated. In numerical simulations, we investigated the influence of the angular acceleration , the initial angular position of the unbalance n and the initial rotating speed on the maximum amplitude. We also performed experiments with various angular accelerations. The following results were obtained: (1) the maximum amplitude depends not only on but also on n and : (2) when the initial angular position n changes. the maximum amplitude varies between two values. The upper and lower bounds of the maximum amplitude do not change monotonously for the angular acceleration: (3) In order to always pass the critical speed with finite amplitude during acceleration. the value of must exceed a certain critical value.Nomenclature O-xyz rectangular coordinate system - , 1, 1 inclination angle of rotor and its projections to thexy- andyz-planes - I r polar moment of inertia of rotor - I diametral moment of inertia of rotor - i r ratio ofI r toI - dynamic unbalance of rotor - directional angle of fromx-axis - c damping coefficient - spring constant of shaft - N nt ,N nt nonlinear terms in restoring forees in 1 and 1 directions - 4 representative angle - a small quantity - V. V u .V N potential energy and its components corresponding to linear and nonlinear terms in the restoring forees - directional angle - n coefficients of asymmetrical nonlinear terms - n coefficients of symmetrical nonlinear terms - coefficients of asymmetrical nonlinear terms experessed in polar coordinates - coefficients of symmetrical nonlinear terms expressed in polar coordinates - rotating speed of shaft - t time - n initial angular position of att=0 - p natural frequency - p 1.p t natural frequencies of forward and backward precessions - , 1, 1 total phases of harmonic, forward precession and backward precession components in summed-and-differential harmonic oscillation - , 1, 1 phases of harmonic, forward precession and backward precession components in summed-and-differential harmonic oscillation - P, R t ,R b amplitudes of harmonic, forward precession and backward precession components in summed-and-differential harmonic oscillation - difference between phases ( = fu) - acceleration of rotor - initial rotating speed - t t ,r b amplitudes of nonstationary oscillation during acceleration - (r t )max, (r b )max maximum amplitudes of nonstationary oscillation during acceleration - (r 1 1 )max, (r b 1 )max maximum value of angular acceleration of non-passable case - 0 critical value over which the rotor can always pass the critical speed - p 1,p 2,p 3,p 4 natural frequencies of experimental apparatus  相似文献   

5.
We consider infiltration into a soil that is assumed to have hydraulic conductivity of the form K = K = Kseh and water content of the form = K – r. Here h denotes capillary pressure head while Ks, , and r represent soil specific parameters. These assumptions linearize the flow equation and permit a closed form solution that displays the roles of all the parameters appearing in the hydraulic function K and . We assume Ks and r to be known. A measurement of diffusivity fixes the product of and resulting in a parameter identification problem for one parameter. We show that this parameter identification problem, in some cases, has a unique solution. We also show that, in some cases, this parameter identification problem can have multiple solutions, or no solution. In addition it is shown that solutions to the parameter identification problem can be very sensitive to small changes in the problem data.  相似文献   

6.
By using Donnell's simplication and starting from the displacement type equations of conical shells, and introducing a displacement functionU(s,,) (In the limit case, it will be reduced to cylindrical shell displacement function introduced by V. S. Vlasov) and a generalized loadq,(s,,),the equations of conical shells are changed into an eighth—order solvable partial differential equation about the displacement functionU(s,,). As a special case, the general bending problem of conical shells on Winkler foundation has been studied. Detailed numerical results and boundary coefficients for edge unit loads are obtained.The project supported by the National Natural Science Foundation of China.  相似文献   

7.
Summary The motion of an incompressible viscous fluid induced by a spinning cone is analytically studied and similar solutions of the relevant steady state boundary equations are obtained. Some of the numerical results are shown to be obtainable from the Karman-Cochran solution for the infinite disc.Symbols and Notation p Pressure - p Pressure at infinity - p 0 Pressure at the wall - Density - Transverse component of velocity - Normal component of velocity - Radial component of velocity - Angular velocity - Semi-vertex angle - Re Reynolds number with respect to o - o Transverse component of velocity at the cone surface - Kinematic viscosity This research is sponsored by the Air Force Office of Scientific Research, Fluid Mechanics Division, under Contract Number AF 18(600)-498.  相似文献   

8.
In this paper the flow is studied of an incompressible viscous fluid through a helically coiled annulus, the torsion of its centre line taken into account. It has been shown that the torsion affects the secondary flow and contributes to the azimuthal component of velocity around the centre line. The symmetry of the secondary flow streamlines in the absence of torsion, is destroyed in its presence. Some stream lines penetrate from the upper half to the lower half, and if is further increased, a complete circulation around the centre line is obtained at low values of for all Reynolds numbers for which the analysis of this paper is valid, being the ratio of the torsion of the centre line to its curvature.Nomenclature A =constant - a outer radius of the annulus - b unit binormal vector to C - C helical centre line of the pipe - D rL - g 1000 - K Dean number=Re2 - L 1+r sin - M (L 2+ 2 r 2)1/2 - n unit normal vector to C - P, P pressure and nondimensional pressure - p 0, p pressures of O(1) and O() - Re Reynolds number=aW 0/ - (r, , s), (r, , s) coordinates and nondimensional coordinates - nonorthogonal unit vectors along the coordinate directions - r 0 radius of the projection of C - t unit tangent vector to C - V r, V , V s velocity components along the nonorthogonal directions - Vr, V, V s nondimensional velocity components along - W 0 average velocity in a straight annulus Greek symbols , curvature and nondimensional curvature of C - U, V, W lowest order terms for small in the velocity components along the orthogonal directions t - r, , s first approximations to V r , V, V s for small - =/=/ - kinematic viscosity - density of the fluid - , torsion and nondimensional torsion of C - , stream function and nondimensional stream function - nondimensional streamfunction for U, V - a inner radius of the annulus After this paper was accepted for publication, a paper entitled On the low-Reynolds number flow in a helical pipe, by C.Y. Wang, has appeared in J. Fluid. Mech., Vol 108, 1981, pp. 185–194. The results in Wangs paper are particular cases of this paper for =0, and are also contained in [9].  相似文献   

9.
Self-similar one-dimensional solutions of the Leibenzon equation c2t= zz k (z 0, k 2) are considered. Approximate solutions are constructed for the two cases in which the initial value = 1 = const > 0 and on the boundary either a constant value = 2 < 1 is maintained or the flow (directed outwards) is given. In the first problem the dependence of the boundary flow on the governing parameters is determined. A characteristic property of the types of motion in question is the existence near the boundary of a region, expanding with time, in which the flow is almost independent of the coordinate.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 145–150, September–October, 1991.  相似文献   

10.
Using approach-withdrawal (AW) as a specific instance of temperament, a theoretical model of temperament as a complex dynamic system is proposed. Developmental contextualism (Lerner, 1998) serves as a guiding theory in determining the structural components of the system and Kauffman's (1993) Boolean models of self-organization are adapted to estimate the parameter functions. In this model P(AW) = f(, ) where P(AW) is the probability density function of an approach or a withdrawal response, ( is a standardized parameter estimate of the biological sensitivity to stimulation, and is a standardized parameter estimate of the contextual response to an approach or withdrawal response. It is theorized that the functions of ( and follow a Hill function of the forms: d /dt = (2/c2 + 2) – K1 d /dt = ( 2/c2 + 2) – K2, where K1, K2, and c are system constants. This results in a double sigmoid function in which at extreme values of and the system stabilizes on a steady state of either approach or withdrawal response patterns. At intermediate parameter values the probability density functions of approach and withdrawal responses are wider. Thus, AW can be modeled as representing two basins of attraction. In addition, considerations are given to the systems sensitivity to initial conditions.  相似文献   

11.
This paper presents some test and analysis results for a spot welded joint subjected to tensile and alternate load. The effect of sheet rigidity on the tensile strength and fatigue life of the spot welded joint is studied by using the stress intensity factorsK I,K II,K III and an effective stress intensity factor Kmax calculated by the finite element method for crack around the nugget. The results show that the effective stress intensity factor Kmax is an essential parameter for estimating the fatigue life of the spot welded joint.  相似文献   

12.
Predicted and measured water-retention values,(), were compared for repacked, stratified core samples consisting of either a sand with a stone-bearing layer or a sand with a clay loam layer in various spatial orientations. Stratified core samples were packed in submersible pressure outflow cells, then water-retention measurements were performed between matric potentials,, of 0 to -100 kPa. Predictions of() were based on a simple volume-averaging model using estimates of the relative fraction and() values of each textural component within a stratified sample. In general, predicted() curves resembled measured curves well, except at higher saturations in a sample consisting of a clay loam layer over a sand layer. In this case, the model averaged the air-entry of both materials, while the air-entry of the sample was controlled by the clay loam in contact with the cell's air-pressure inlet. In situ, avenues for air-entry generally exist around clay layers, so that the model should adequately predict air-entry for stratified formations regardless of spatial orientation of fine versus coarse layers. Agreement between measured and predicted volumetric water contents,, was variable though encouraging, with mean differences between measured and predicted values in the range of 10%. Differences in of this magnitude are expected due to variability in pore structure between samples, and do not indicate inherent problems with the volume averaging model. This suggets that explicit modeling of stratified formations through detailed characterization of the stratigraphy has the potential of yielding accurate() values. However, hydraulic-equilibration times were distinctly different for each variation in spatial orientation of textural layering, indicating that transient behavior during drainage in stratified formations is highly sensitive to the stratigraphic sequence of textural components, as well as the volume fraction of each textural component in a formation. This indicates that prolonged residence times of water, nutrients, and pollutants are likely within finer-textured layers, when conditions have resulted in drainage of underlying coarser-textured strata.  相似文献   

13.
An experimental study of the flow around a cylinder with a single straight perturbation was conducted in a wind tunnel. With this bluff body, positioned in a uniform crossflow, the vortex shedding frequency and other flow characteristics could be manipulated.The Strouhal number has been shown to be a function of the perturbation angular position, p , as well as the perturbation size and Reynolds number. As much as a 50% change in Strouhal number could be achieved, simply by changing p by 1°. The perturbation size compared to the local boundary layer thickness, , was varied from approximately 1 to about 20 . The Reynolds number was varied from 10,000 to 40,000. For perturbation sizes approximately 5 to 20 and Reynolds numbers of 20,000 to 40,000, a consistent Strouhal number variation with p was observed.A detailed investigation of the characteristic Strouhal number variation has shown that varying p had a significant influence on the boundary layer separation and transition to turbulence. These significant changes occurring in the boundary layer have been shown to cause variations in the spacing between the shear layers, base pressure, drag, lift, and the longitudinal spacing between the vortices in the vortex street.List of Symbols a longitudinal spacing of vortices in the vortex street - C d drag coefficient - C dc drag coefficient corrected for blockage effect - C l lift coefficient - C p pressure coefficient, p i p /q - C pb base pressure coefficient - C pbc base pressure coefficient corrected for blockage effect - d perturbation diameter - d * spacing between the shear layers; defined as conditionally averaged spacing between points in the shear layers corresponding to 0.99u max/U - D cylinder diameter; diameter of the circumscribing circle for a cable - f v vortex shedding frequency - H wind tunnel test section cross-sectional width - L spanwise length of the cylinder - p i tap pressure - p free stream static pressure - q free stream dynamic pressure - Re Reynolds number based on cylinder diameter - rms root-mean-square - S Strouhal number, f v D/U - S max maximum value of S - S min minimum value of S - t time - u c vortex convection velocity - u max maximum velocity in the shear layer - U free stream velocity - U c free stream velocity, corrected for blockage effect - x streamwise dimension referenced from the back of the cylinder - z lateral wake dimension, i.e., perpendicular to the free stream velocity vector and cylinder axis, referenced from the cylinder axis - x spacing between two hot wire probes aligned streamwise - phase difference between two hot wire probes aligned streamwise - boundary layer thickness - angle from stagnation point in degrees - p perturbation angular position - b p where S drops back to about the S of a cylinder - c critical angle, angular position where S drops steeply with 1° change in - m p where S was minimum - r p after S recovers from drop in value - t p where S starts to increase from about the S of a cylinder  相似文献   

14.
S. Kase 《Rheologica Acta》1982,21(2):210-211
The general integral of the very simple equation 21/n/() was found to describe the cross sectional area of filaments of isothermal power law fluids while in transient stretching where is time and is the initial location of fluid molecules at time = 0 given as the distance from a reference point fixed in space. Any such stretching transient given as a solution of the above equation is physically realizable subject to the restrictions > 0 and/ < 0.  相似文献   

15.
The documentation and control of flow disturbances downstream of various open inlet contractions was the primary focus with which to evaluate a spatial sampling technique. An X-wire probe was rotated about the center of a cylindrical test section at a radius equal to one-half that of the test section. This provided quasi-instantaneous multi-point measurements of the streamwise and azimuthal components of the velocity to investigate the temporal and spatial characteristics of the flowfield downstream of various contractions. The extent to which a particular contraction is effective in controlling ingested flow disturbances was investigated by artificially introducing disturbances upstream of the contractions. Spatial as well as temporal mappings of various quantities are presented for the streamwise and azimuthal components of the velocity. It was found that the control of upstream disturbances is highly dependent on the inlet contraction; for example, reduction of blade passing frequency noise in the ground testing of jet engines should be achieved with the proper choice of inlet configurations.List of symbols K uv correlation coefficient= - P percentage of time that an azimuthal fluctuating velocity derivative dv/d is found - U streamwise velocity component U=U (, t) - V azimuthal or tangential velocity component due to flow and probe rotation V=V (, t) - mean value of streamwise velocity component - U m resultant velocity from and - mean value of azimuthal velocity component induced by rotation - u fluctuating streamwise component of velocity u=u(, t) - v fluctuating azimuthal component of velocity v = v (, t) - u phase-averaged fluctuating streamwise component of velocity u=u(0) - v phase-averaged fluctuating azimuthal component of velocity v=v() - û average of phase-averaged fluctuating streamwise component of velocity (u()) over cases I-1, II-1 and III-1 û = û() - average of phase-averaged fluctuating azimuthal component of velocity (v()) over cases I-1, II-1 and III-1 - u fluctuating streamwise component of velocity corrected for non-uniformity of probe rotation and/or phase-related vibration u = u(0, t) - v fluctuating azimuthal component of velocity corrected for non-uniformity or probe rotation and/or phase-related vibration v=v (, t) - u 2 rms value of corrected fluctuating streamwise component of velocity - rms value of corrected fluctuating azimuthal component of velocity - phase or azimuthal position of X-probe  相似文献   

16.
Investigated in the present study are some statistical features of temperature fluctuations in a two-dimensional separated and reattached turbulent flow over a blunt flat plate. Clarified are statistic behaviors of temperature fluctuation intensities, its autocorrelation coefficients, integral time scales, power spectra, probability density functions, skewness and flatness factors in the separated, reattached and redeveloped flow regions. Further, the present results are compared with the existing ones for a normal turbulent boundary layer over a flat plate without separation.
Temperaturschwankungen in einer abgelösten und wiederanliegenden turbulenten Strömung über eine stumpfe ebene Platte
Zusammenfassung In der vorliegenden Untersuchung wurden mehrere statistische Charakteristika der Temperaturschwankungen im Bereich der abgelösten, wiederanliegenden und wiederausgebildeten zwei-dimensionalen turbulenten Luftströmung über eine ebene Platte mit stumpfer Vorderkante experimentell untersucht. Besonders wurde das statistische Verhalten der Intensität der Temperaturschwankungen, die Autokorrelationskoeffizienten, der integrale Zeitmaßstab, das Leistungsspektrum und die Wahrscheinlichkeits-Dichte-Funktion und die schiefen und ebenen Beiwerte im Bereich der abgelösten, wiederanliegenden und wiederausgebildeten Luftströmung beschrieben. Die erhaltenen Ergebnisse werden mit bereits existierenden Ergebnissen für eine turbulente Grenzschicht ohne Druckgradient über eine ebene Platte verglichen.

Nomenclature E(k) power spectrum - z flatness factor - f frequency - 2H plate thickness - k wave number=2f/U - l time-mean reattachment length - P() probability density function - q w heat flux per unit area and time - R () autocorrelation coefficient - Re Reynolds number=U·H/v - S skewness factor - T integral time scale - U velocity of upstream uniform flow - U,u local streamwise mean and turbulent fluctuating velocity - u + friction velocity= - x distance from leading edge along plate surface - y distance normal to wall - y + nondimensional wall distance=u +·y/v - T nominal thermal boundary layer thickness defined as a wall distance of (-)/(gQ W - )=0.01 - m momentum thickness - , mean and turbulent fluctuating temperature - temperature at upstream uniform flow - w wall temperature - v kinematic viscosity of air - fluid density - time lag - w wall shear stress  相似文献   

17.
The assumption that the Mach reflection which is formed over the second surface of a double wedge with angles w 1 and kw/2 approaches asymptotically the Mach reflection which would have been obtained by an identical incident shock wave over a single wedge with an angle w = w 2 was verified experimentally. The verification of this assumption supports the shock polar analysis suggested by Ben-Dor et al. (1987) for the study of the reflection process of a planar shock wave over a double wedge. Measurements of the rate of approach to the asymptotic value are also provided.  相似文献   

18.
Zusammenfassung Aus der Anlaufkorrektur kann man nach einer Rechnung vonFromm, die auf dem Maxwellschen Modell basiert, eine Relaxationszeit und eine korrigierte Viskosität c ermitteln. Der Quotient c/ stellt einen Schermodul dar. Diese Größe wird für Lösungen von Cellulosetrinitrat in Butylacetat, Polyvinylacetat in Dioxan, Polystyrol in Toluol, Polyacrylamid in Wasser, und Viskose, in Abhängigkeit von der Konzentrationc und dem SchergefälleD ermittelt. Es zeigt sich, daß c/ etwa im Wendepunkt der Fließkurven eine Art Plateau oder ein flaches Maximum zeigt und in diesem Plateaubereich eine lineare Abhängigkeit von der Konzentration. Die absolute Größe von c/ ist jedoch um Größenordnungen geringer, als sie nach der Formel vonRouse bzw.Bueche für die erste Relaxationszeit eines Verhängungsnetzwerkes zu erwarten wäre. Das wird so gedeutet, daß bei dem hohen Schergefälle, das bei den Messungen herrschte (D etwa 104 sec–1), ein Teil der Verhängungen zerstört ist, wodurch die Relaxationszeit vergrößert und der Schermodul verkleinert wird.
Summary From the end-correction, according to a calculation byFromm based upon theMaxwell-model, a relaxation time and a corrected viscosity c can be obtained. The quotient c/ represents a shear modulus. Its value is determined for solutions of cellulosetrinitrate in butylacetate, polyvinylacetate in dioxane, polystyrene in toluene, polyacryloamide in water, and viscose, in dependence of concentrationc and shear rateD. It is found, that c/ shows a plateau or a flat maximum at the inflection point of the flow curves. In this range, a linear dependence on concentration is found too. The absolute value of c/, however, is smaller by orders of magnitude than that to be expected for the first relaxation time of an entanglement network according to the formulas byRouse resp.Bueche. This is explained by a partial disruption of entanglements in the high shear rate prevailing at the experiments (D about 104 sec–1), which effects an increase of the relaxation time and a decrease of the shear modulus.


Vorgetragen auf der Jahrestagung der Deutschen Rheologen in Bad Ems vom 18.–19. Mai 1967.  相似文献   

19.
The present paper is devoted to the theoretical study of the secondary flow induced around a sphere in an oscillating stream of an elastico-viscous liquid. The boundary layer equations are derived following Wang's method and solved by the method of successive approximations. The effect of elasticity of the liquid is to produce a reverse flow in the region close to the surface of the sphere and to shift the entire flow pattern towards the main flow. The resistance on the surface of the sphere and the steady secondary inflow increase with the elasticity of the liquid.Nomenclature a radius of the sphere - b ik contravariant components of a tensor - e contravariant components of the rate of strain tensor - F() see (47) - G total nondimensional resistance on the surface of the sphere - g ik covariant components of the metric tensor - f, g, h secondary flow components introduced in (34) - k 0 measure of relaxation time minus retardation time (elastico-viscous parameter) - K =k 0 2/V 0 2 , nondimensional parameter characterizing the elasticity of the liquid - n measure of the ratio of the boundary layer thickness and the oscillation amplitude - N, T defined in (44) - p arbitrary isotropic pressure - p ik covariant components of the stress tensor - p ik contravariant components of the stress tensor associated with the change of shape of the material - R =V 0 a/v, the Reynolds number - S =a/V 0, the Strouhall number - r, , spherical polar coordinates - u, v, w r, , component of velocity - t time - V(, t) potential velocity distribution around the sphere - V 0 characteristic velocity - u, v, t, y, P nondimensional quantities defined in (15) - reciprocal of s - density - defined in (32) - defined in (42) - 0 limiting viscosity for very small changes in deformation velocity - complex conjugate of - oscillation frequency - = 0/, the kinematic coefficient of viscosity - , defined in (52) - (, y) stream function defined in (45) - =(NT/2n)1/2 y - /t convective time derivative (1) ik   相似文献   

20.
Wave angle for oblique detonation waves   总被引:3,自引:0,他引:3  
The flow field associated with a steady, planar, oblique detonation wave is discussed. A revision is provided for- diagrams, where is the wave angle and is the ramp angle. A new solution is proposed for weak underdriven detonation waves that does not violate the second law. A Taylor wave, encountered in unsteady detonation waves, is required. Uniqueness and hysteresis effects are also discussed.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号