首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 109 毫秒
1.
采用高温固相法合成了绿色荧光粉Ca3Y2Si3O12:Tb3+.XRD检测结果显示,荧光粉主晶相为Ca3Y2Si3O12,属单斜晶系.荧光光谱分析表明:Ca3Y2Si3O12:Tb3+硅酸盐荧光粉可以被370 nm的近紫外光激发,发射绿光,主发射峰位于490 nm(5D47F6),544 nm(5D47F5),585 nm(5D47F4)和621 nm(5D47F3).用544 nm最强峰监测,得到主激发峰位于370 nm的激发光谱,此光谱覆盖了300~450 nm的波长范围.研究了煅烧条件、掺杂浓度及Ce3+共掺杂对荧光粉发光性能的影响:在1 400 ℃下经二次煅烧 6 h得到的样品的发光性能最佳,Tb3+离子的最佳掺杂浓度为20mol%,Ce3+离子共掺杂能够提高荧光粉的发光强度,其最佳掺杂量为4mol%,说明存在Ce3+→Tb3+的能量传递.  相似文献   

2.
采用溶胶-凝胶法合成了YNbO4∶Tb^3+,Sm^3+系列荧光粉。光谱测试表明:体系中的NbO43-基团能够吸收紫外光并将能量传递给Tb^3+和Sm^3+,从而增强荧光粉的发光强度。在290 nm激发下,YNbO4∶Tb^3+,Sm^3+荧光粉的发射光谱中既出现了Tb^3+的绿光发射又出现了Sm^3+的橙光发射。通过改变Sm^3+的掺杂浓度,实现了荧光粉发射光的光色可调。  相似文献   

3.
采用高温固相法合成了系列Ce~(3+)和Ce~(3+)/Tb~(3+)激活的具有磷灰石结构荧光粉Ba_(10)(PO_4)_6F_2。用X射线衍射(XRD)、扫描电镜(SEM)、激发和发射(PLE和PL)光谱对样品进行了表征分析。研究结果表明:所合成的荧光粉Ba_(10)(PO_4)_6F_2∶Ce~(3+),Tb~(3+)具有氟磷灰石结构,样品微观呈现不规则形貌。荧光粉Ba10-x(PO4)6F2∶x Ce~(3+)的相对发射强度随着x增加而增强,当x=0.09时,荧光强度达到最大。荧光粉Ba_(10)(PO_4)_6F_2∶Ce~(3+),Tb~(3+)的激发光谱为240~330 nm的宽带,发射光谱呈现出Ce~(3+)的5d→4f跃迁紫外光(335和358 nm)发射和Tb~(3+)的4f→4f跃迁绿光(542 nm)发射。光谱特性表明,发光过程中存在Ce~(3+)→Tb~(3+)能量传递,能量传递效率可以达到60%。计算Ce~(3+)和Tb~(3+)的临界距离为0.79 nm,能量传递机理是偶极-偶极交互作用。此外,详细论述了Ce~(3+)和Tb~(3+)之间的能量传递和发光的过程。通过调节Tb~(3+)的掺杂浓度,对荧光粉发光色坐标与Tb~(3+)的掺杂浓度之间的关系也进行了研究,随着Tb~(3+)的掺杂量从0增加0.52,荧光粉Ba_(10)(PO_4)_6F_2∶Ce~(3+),Tb~(3+)的发射光谱色坐标可以从(0.149 4,0.045 1)蓝色区变化到(0.280 1,0.585 3)绿色区。  相似文献   

4.
近红外荧光粉在生物活体成像领域展现出重要的应用前景。但活体成像用近红外荧光粉存在种类匮乏、耐温性差等瓶颈问题。采用固相法合成了宽带近红外Ca4HfGe3O12xCr3+(0≤x≤0.09)荧光粉。X射线衍射和能谱分析的结果表明Cr3+离子成功进入Ca4HfGe3O12晶格。在469 nm蓝光激发下,Ca4HfGe3O12∶xCr3+荧光粉发射出690~1 200 nm的宽带近红外光,峰值波长为825 nm (4T2-4A2),半高宽达到141 nm,Cr3+掺杂最佳浓度为0.03。依据激发光谱峰形和寿命衰减行为,证实Cr3+仅占据基质中一种阳离子格位。Ca4HfGe3O12∶0.03Cr3+荧光粉的荧光量子效率为33.63%,该荧光粉发射光谱在400 K下的积分面积为室温下的60.5%,表明该样品具有优良的热稳定性。采用自制近红外荧光粉转换器件照射人手掌和滤波片遮挡的水果,观察到清晰地静脉血管和遮挡水果的轮廓。  相似文献   

5.
Dy3+,Eu3+双掺单基质Ca9Y(PO4)7白色荧光粉的合成与发光性能   总被引:1,自引:0,他引:1  
以具有多种格位的Ca9Y(PO4)7作为基质, 以Dy3+和Eu3+作为共激活剂, 利用高温固相法合成了一种单基质白光荧光粉. X射线衍射证实样品属于三方晶系菱面体结构, Dy3+和Eu3+在Ca9Y(PO4)7晶体中占据了Y3+ 的格位. 样品在365 nm紫外线激发下, 荧光光谱同时出现了Dy3+和Eu3+的特征发射, 且发光强度以及色度坐标随着Dy3+和Eu3+掺杂比率的变化而有规律变化, 所有样品的发射均处于白光区域. 利用近紫外芯片作为激发源, 单一基质白色荧光粉Ca9Y1-x-y(PO4)7: xDy3+, yEu3+可应用于白光发光二极管等领域.  相似文献   

6.
采用水热法制备出Ca_9Y(PO4)7∶Ce~(3+),Tb~(3+)纳米荧光粉,通过XRD、SEM和荧光光谱等对样品进行了分析,研究在Ca_9Y(PO4)7基质中引入Ce~(3+),Tb~(3+)离子对发光性能的影响规律。研究发现因Tb~(3+)离子自身能量交叉驰豫的存在,使得单掺Tb~(3+)时,通过调节Tb~(3+)离子的浓度可以实现对发光颜色的控制。同时研究了Ce~(3+)-Tb~(3+)之间的能量传递为电多极相互作用的偶极-四极机制,Ce~(3+)-Tb~(3+)之间最大的能量传递效率为55.6%。Ca_9Y(PO4)7∶Ce~(3+),Tb~(3+)的发光颜色可以通过激活离子之间的能量传递和共发射得到可控调节。SEM分析表明荧光粉颗粒尺寸在100 nm左右,分散性好。  相似文献   

7.
采用水热法成功合成了形貌可控的NaCaGd_(1-x)(WO_4)_3∶x Eu~(3+)红色荧光粉。系统地研究了初始溶液pH值、反应温度和Eu3+掺杂浓度对NaCaGd_(1-x)(WO_4)_3∶x Eu~(3+)荧光粉物相结构、微观形貌和发光性能的影响。结果表明,当pH值为9、反应温度为180℃时,可合成单相四方晶系的NaCaGd(WO_4)_3,且颗粒微观形貌呈现分散性好、尺寸较均一的四方盘状纳米晶。在394 nm激发下,荧光粉显现典型的红光发射,其对应于Eu~(3+)的特征4f-4f跃迁。荧光粉发射光谱的强度随着pH值、反应温度及Eu~(3+)掺杂浓度的变化而变化。当pH=9、反应温度为180℃时,NaCaGd_(1-x)(WO_4)_3∶x Eu~(3+)(x=1)获得最佳发光强度。此外,研究了NaCaEu(WO_4)_3荧光粉的热稳定性,结果显示随着温度的升高,荧光粉发光强度逐渐降低。最后,通过理论计算得到荧光粉的色坐标和色纯度分别为(0.658,0.341)和96.1%,接近标准红色CIE坐标(0.673,0.327)。  相似文献   

8.
用传统的固态反应法合成了新型红色Eu3+掺杂的Gd2SrAl2O7红色荧光粉。通过添加Li2CO3助熔剂,有效地降低了反应温度,获得了纯Gd2SrAl2O7相。用X射线衍射仪分析确认了产物为Gd2SrAl2O7晶相,并用光谱仪测试了光谱性能,发现当Eu3+掺杂浓度为30%时,荧光粉在623 nm处有最强发光,是Y2O3:Eu3+的两倍。(Gd0.7Eu0.3)2SrAl2O7(x=0.650,y=0.349)色度值与美国国家电视标准委员会标准值(x=0.670,y=0.330)接近。  相似文献   

9.
用溶剂热法制备了K_3ZrF_7,并利用离子交换法对其进行Mn~(4+)掺杂,获得了发光强度较高的红色荧光粉。分别用X射线衍射仪(XRD)和扫描电子显微镜(SEM)对材料的结构和形貌进行了表征。考察了掺杂浓度(物质的量分数)对材料发光强度的影响。通过对比2种锰掺杂材料的发光行为,发现在掺杂浓度相同的条件下,K_3ZrF_7∶Mn~(4+)的发光强度是K_2ZrF_6∶Mn~(4+)的10倍多。通过对二者晶体结构和掺杂离子配位环境进行分析,从晶体场理论的角度解释了发光强度差异机制。  相似文献   

10.
史忠祥  卢杨  王晶  关昕  时军  江豪 《无机化学学报》2018,34(11):1975-1982
应用传统水热法合成出具有四方白钨矿结构的NaY(WO_4)_2微米颗粒及一系列Er~(3+)/Yb~(3+)共掺杂NaY(WO_4)_2上转换荧光粉。利用XRD、SEM、TEM、HRTEM、粒度分布和上转换发光光谱对样品的物相、形貌及上转换发光性能进行分析表征。结果表明,p H值对于制备具有同一形貌的纯相NaY(WO_4)_2微米颗粒发挥重要作用。随着pH值的升高,可以完成从八面体到拟立方体再到片状颗粒的形貌转变。在980 nm近红外光激发下,观测到525及553 nm处的强绿光发射,对应Er~(3+)的~2H_(11/2)→~4I_(15/2)与~4S_(3/2)→~4I_(15/2)跃迁,以及650~680 nm范围内的弱红光发射,对应Er~(3+)的~4F_(9/2)→~4I_(15/2)跃迁,且绿、红光上转换发射均属于双光子过程。此外,通过调节NaY(WO_4)_2∶Er~(3+),Yb~(3+)荧光粉中Yb~(3+)的浓度,可实现对绿光色度的有效控制。  相似文献   

11.
采用共沉淀法及1 200 ℃后续煅烧4 h,成功制备了CaSb2O6:Bi3+,Eu3+荧光粉,并对其结构及发光性能进行了研究。所制备荧光粉颗粒为六边形类圆饼状,平均尺寸在100~600 nm之间。对CaSb2O6:Bi3+,Eu3+发光的机理分析表明,Bi3+对Eu3+的发光存在高效的敏化与能量传递。当Bi3+和Eu3+的掺杂浓度分别为0.5%和8%,Eu3+位于580 nm(5D07F0 )处的荧光发射显著增强,Bi3+,Eu3+共掺样品的荧光强度是CaSb2O6:Eu3+的10倍左右。调节Bi3+/Eu3+离子掺杂比,色坐标呈现了从蓝、白光到红光的变化,表明该荧光粉可分别作为蓝或红色荧光粉使用,甚至可实现从蓝、白光到红光的自由调控,这为白光LED荧光粉的发展提供了参考。  相似文献   

12.
采用水热法合成前驱体,后经热处理方式制备不同晶相的LaBO3∶Eu^3+荧光粉。通过X射线衍射(XRD)、电子扫描电镜(SEM)、红外光谱和荧光光谱对样品的结构、形貌和发光性能进行了研究。并研究了硼酸用量、热处理温度及初始溶液pH等对晶相结构和发光性能的影响。XRD研究结果表明:合成样品具有单斜结构、正交结构及单斜和正交两相混合结构。适当的硼酸用量、较高的热处理温度及较高的初始溶液pH值易于获得正交结构的荧光粉。红外光谱显示:pH值和硼酸用量影响前驱体成分,热处理温度影响晶相的转变。SEM结果显示:LaBO3∶Eu^3+荧光粉的晶粒尺寸随着pH值的增加逐渐减小,与XRD计算结果相一致。荧光光谱结果表明:正交结构的LaBO3∶Eu^3+发光粉具有较高的紫外吸收和较为纯正的红色发射强度。  相似文献   

13.
采用优化的高温固相方法制备了稀土离子Eu~(3+)和Tb~(3+)掺杂的La_7O_6(BO_3)(PO_4)_2系荧光材料,并对其物相行为、晶体结构、光致发光性能和热稳定性进行了详细研究。结果表明,La_7O_6(BO_3)(PO_4)_2∶Eu~(3+)材料在紫外光激发下能够发射出红光,发射光谱中最强发射峰位于616 nm处,为5D0→7F2特征能级跃迁,Eu~(3+)的最优掺杂浓度为0.08,对应的CIE坐标为(0.610 2,0.382 3);La_7O_6(BO_3)(PO_4)_2∶Tb~(3+)材料在紫外光激发下能够发射出绿光,发射光谱中最强发射峰位于544 nm处,对应Tb~(3+)的5D4→7F5能级跃迁,Tb~(3+)离子的最优掺杂浓度为0.15,对应的CIE坐标为(0.317 7,0.535 2)。此外,对2种材料的变温光谱分析发现Eu~(3+)和Tb~(3+)掺杂的La_7O_6(BO_3)(PO_4)_2荧光材料均具有良好的热稳定性。  相似文献   

14.
以尿素为沉淀剂,采用低温水热法结合煅烧过程制备出MgAl2O4∶Er^3+,Yb^3+上转换荧光粉,并对样品的结构、微观形貌及上转换发光性能予以表征。结果表明,随尿素加入量的增大,产物主形貌由六角片状结构向纳米棒状转变,经1100℃煅烧可得纯相镁铝尖晶石结构,且Er^3+和Yb^3+能有效进入MgAl2O4晶格并占据Mg^2+位置形成均匀固溶体。在980 nm光激发下,MgAl2O4∶1.0%(n/n)Er^3+,x%(n/n)Yb^3+(x=0~8.0)荧光粉表现出在524、545 nm处绿光以及658 nm处的强红光发射,红绿光强度均在5.0%(n/n)Yb^3+掺杂时达到最大,但红绿光强度比却在7.0%(n/n)Yb^3+掺杂时达到最大值5.2,这归因于Er^3+-Er^3+之间交叉弛豫(CR)在红光发射过程中所起的重要作用。通过控制荧光粉中Yb^3+的掺杂量,能初步实现对于黄绿光色度的有效调控。  相似文献   

15.
通过高温固相法合成了双钙钛矿型Ca2Gd1-xTaO6xTb3+(CGTO:xTb3+)绿色荧光粉。采用X射线衍射、扫描电镜、荧光光谱、荧光衰减曲线、量子效率(η)测试分别表征了CGTO: xTb3+荧光粉的物相、形貌和荧光性质。在紫外光激发下,CGTO: xTb3+荧光粉实现了较强的绿光发射,绿光为Tb3+离子的5D4-7F5跃迁。通过变温发射光谱研究发现CGTO:0.15Tb3+荧光粉的热猝灭活化能为0.181 9 eV。在255 nm的激发下,最佳Tb3+掺杂浓度的CGTO:0.15Tb3+荧光粉的量子效率为32.32%。  相似文献   

16.
采用液相法成功制备了MWCNTs负载NaGdF_4∶Tb~(3+),Eu~(3+)纳米粒子的磁光热多功能复合纳米材料,并用XRD,SEM和EDS对其结构、组成和形貌进行了表征,结果表明:NaGdF_4∶Tb~(3+),Eu~(3+)纳米粒子为六方晶相,形貌为球形且尺寸分布均匀,直径大约为25 nm,并且均匀的包覆在MWCNTs的表面;通过PL,VSM和HTC对复合纳米材料的发光性能,磁性能和光热转换性能进行了表征,采用MTT法对多功能复合纳米材料的生物相容性进行了评估,结果表明:MWCNTs-NaGdF_4∶Tb~(3+),Eu~(3+)复合纳米材料具有良好的多色发光性能、磁性能、光热转换性能、低的毒性和良好的生物相容性。该种磁光热多功能复合纳米材料在生物标记、生物成像、肿瘤诊疗等领域有着广泛的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号