首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polypyrrole (PPy) doped with dodecylbenzene sulfonic acid was synthesized and was blended with compatible polymer PMMA in chloroform. Flexible and free-standing films with compositions PPy: PMMA = 10: 90, 20: 80, 30: 70, and 50: 50 were obtained. The percentage of crystallinity and particle size of synthesized polymers were estimated from X-rays diffraction studies. Scanning Electron Micrographs showed that phase separation was observed and compatibility of the mixture decreased with increase of PMMA content. The dielectric measurements were performed in the frequency range 0.1 kHz–1 MHz in temperature range 303–473 K. The frequency dependent conductivity (σac) obeyed a power law of frequency with an exponent s < 1. Electric modulus formalism exhibits a peak in frequency. The peak of conductivity relaxation shifted towards higher frequencies and the magnitude of relaxation decreased with the increase of PMMA content in the composites.  相似文献   

2.
A series of electrically conductive polypyrrole/clay nanocomposites were synthesized in this work by using one-pot emulsion oxidative polymerization of pyrrole in the presence of unmodified clay and using DBSNa as the surfactant. The effect of surfactant on the morphological and electrical properties of PPy also were investigated and discussed in some extent. Electrical conductivity of the samples was measured by using samples in which the conductive materials was sandwiched between two Ni electrodes at room temperature. PPy/MMT nanocomposites were characterized by using XRD, TEM, TGA and DSC means of investigation. Intercalated structures were determined for the nanocomposites as confirmed by XRD and TEM studies. Electrical conductivity of the nanocomposites was measured to be dependent to the clay content, and the methods of preparation. Measurement also showed that polymerization of pyrrole monomers pre-intercalated between the clay gallery spaces of the clay led to higher conductivity for the nanocomposite in the same level of clay content. Thermal property measurements showed a lower thermal decomposition rate for the PPy/MMT nanocomposites with respect to the PPy.  相似文献   

3.
The electrical conductivity of (LiX) y [(Li2O)0.6(P2O5)0.4](1???y) (X?=?Cl, Br, y?=?0, 0.1, 0.15, 0.2) glasses has been determined over a wide range of temperature and frequency by means of impedance spectroscopy. The real part of the frequency-dependent conductivity exhibits a simple power law feature, and the dimensionless frequency exponent n has been determined. The conductivity spectra show scaling behaviour when the conductivity spectra are scaled by ω/(σ dc T) and ω/ω p . The conductivity relaxation time and activation energy have been estimated from the modulus spectra. Increases of ionic conductivity values with addition of LiX content are in line with the decrease of activation energy and relaxation time.  相似文献   

4.
This work describes the preparation and characterization of polypyrrole (PPy)/iron oxide nanocomposites fabricated from monodispersed iron oxide nanoparticles in the crystalline form of magnetite (Fe3O4) and PPy by in situ chemical oxidative polymerization. Two spherical nanoparticles of magnetite, such as 4 and 8 nm, served as cores were first dispersed in an aqueous solution with anionic surfactant sodium bis(2‐ethylhexyl) sulfosuccinate to form micelle/magnetite spherical templates that avoid the aggregation of magnetite nanoparticles during the further preparation of nanocomposites. The PPy/magnetite nanocomposites were then synthesized on the surface of the spherical templates. Structural and morphological analysis showed that the fabricated PPy/magnetite nanocomposites are core (magnetite)‐shell (PPy) structures. Morphology of the PPy/magnetite nanocomposites containing monodispersed 4‐nm magnetite nanoparticles shows a remarkable change from spherical to tube‐like structures as the content of nanoparticles increases from 12 to 24 wt %. Conductivities of these PPy/magnetite nanocomposites show significant enhancements when compared with those of PPy without magnetite nanoparticles, in particular the conductivities of 36 wt % PPy/magnetite nanocomposites with 4‐nm magnetite nanoparticles are about six times in magnitude higher than those of PPy without magnetite nanocomposites. These results suggest that the tube‐like structures of 36 wt % PPy/magnetite nanocomposites may be served as conducting network to enhance the conductivity of nanocomposites. The magnetic properties of 24 and 36 wt % PPy/magnetitenanocomposites show ferromagnetic behavior and supermagnetism, respectively. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1291–1300, 2008  相似文献   

5.
纳米石墨薄片/聚吡咯复合材料的制备及导电性能   总被引:1,自引:0,他引:1       下载免费PDF全文
膨胀石墨经过超声处理制备了纳米石墨薄片。以其为导电填料,对甲苯磺酸为掺杂剂,FeCl3·6H2O为氧化剂,引发吡咯单体发生原位聚合,制备出纳米石墨薄片/聚吡咯(NanoGs/PPy)复合材料。利用红外光谱(FTIR)、扫描电镜(SEM)和透射电镜(TEM)表征了材料的组成和结构。结果表明,石墨薄片被聚吡咯完全包覆;并且以纳米级尺寸分散在聚吡咯基体中。热失重(TG)分析和电导率测试结果表明,复合材料的耐热性能和导电性能较纯聚吡咯有所提高。  相似文献   

6.
This article investigates the effect of moisture on the dynamic mechanical behavior of polyamide-6 (PA6)/clay nanocomposites with dynamic mechanical analysis from −130 to 110 °C. The storage moduli increase with the clay loading for dried and moisture-absorbed samples because of the enhancing effect from the high-aspect-ratio nanoclay. Storage moduli for moisture-exposed samples are lower than those for dried samples; the longer the moisture absorption period is, the lower the moduli are for neat PA6 and PA6/clay nanocomposites. At temperatures below about 10 °C, however, samples exposed to moisture for longer periods tend to be stiffer than dried samples, probably because of the stiffening effect of ice. The peak temperature of the β relaxation shifts from −53 to −65 °C as the moisture content increases. The glass-transition temperature (Tg) or α relaxation dramatically shifts; its position is significantly lowered from 62 to 17 °C as the moisture content increases (longer moisture absorption period) and from 62 to 50 °C as the clay loading increases. The observed depression of the storage modulus and Tg may be attributed to the plasticization effect of moisture absorption. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1823–1830, 2004  相似文献   

7.
《先进技术聚合物》2018,29(5):1377-1384
In this work, thermoplastic polyurethane‐filled montmorillonite‐polypyrrole (TPU/Mt‐PPy) was prepared through melt mixing process for using in electromagnetic shielding applications. The effect of conducting filler content and type, sample thickness, and X‐band frequency range on the electromagnetic interference shielding effectiveness (EMI SE) and EMI attenuation mechanism was investigated. A comparative study of electrical and microwave absorption properties of TPU/Mt‐PPy nanocomposites and TPU/PPy blends was also reported. The total EMI SE average and electrical conductivity of all Mt‐PPy.Cl or Mt‐PPy.DBSA nanocomposites are higher than those found for TPU/PPy.Cl and TPU/PPy.DBSA blends. This behavior was attributed to the higher aspect ratio and better dispersion of the nanostructured Mt‐PPy when compared with neat PPy. Moreover, the presence of Mt‐PPy into TPU matrix increases absorption loss (SEA) mechanism, contributing to increase EMI SE. The total EMI SE values of nanocomposites containing 30 wt% of Mt‐PPy.DBSA with 2 and 5 mm thickness were approximately 16.6 and approximately 36.5 dB, respectively, corresponding to the total EMI of 98% (75% by absorption) and 99.9% (88% by absorption). These results highlight that the nanocomposites studied are promising materials for electromagnetic shielding applications.  相似文献   

8.
The direct‐current and alternating‐current electrical behavior of nanocomposites, formed by isotactic polypropylene partially modified with maleic anhydride and filled with different amounts of modified synthetic clay, has been studied; moreover, the conduction mechanisms and the relaxation processes that take place in the materials have been investigated. The nanocomposites containing small clay contents exhibit direct‐current insulating properties comparable to or even higher than those observed in the polymeric matrix. However, as the synthetic clay content increases, the ionic contribution to conductivity becomes considerable. The nanocomposites also show a slightly higher permittivity and loss factor than the host material because of the appearance of a thermally activated relaxation process in the frequency range of 10?2 to 102 Hz at the investigated temperatures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 705–713, 2007  相似文献   

9.
This research paper comprises of the synthesis of polypyrrole (PPy)-Fe2O3 nanocomposites by employing the in situ chemical oxidative polymerization method. The concentration of the filler material was adjusted between 10–50 wt % of PPy. The synthesized nanocomposites were characterized by using X-ray diffraction (XRD). Magnetic analysis and DC electrical conductivity of the samples were carried out using vibrating sample magnetometer (VSM) and two probe DC conductivity method, point towards magnetically active and electrically conductive samples. The magnetic parameters under applied magnetic field demonstrated that the values of coercivity (H c ), saturation magnetization (M s ) and remanence (M r ) can be tailored by carefully controlling the amount of dopant material into the nanocomposites indicating their suitability for controllable switching devices and microwave absorption applications. The DC electrical conductivity showed an increase up to 20 wt % of filler material and thereafter a decrease in the conductivity of nanocomposites with increase in filler content is observed. Thermogravimetric analysis (TGA) showed an increase in thermal stability with an increase in ferrite content in nanocomposites.  相似文献   

10.
聚合物基粘土纳米复合材料的流变行为研究   总被引:7,自引:0,他引:7  
聚合物基粘土纳米复合材料具有与常规颗粒填充体系类似的流变特性 :在整个频率范围内 ,储能模量和损耗模量均随粘土含量的增加而变高 ,其频率依赖性会表现出非未端行为 :且当粘土含量超过临界值以后 ,储能模量会在低频区表现出似固体的平台发展。但与之不同的是前者在低粘土含量的条件下 (<10 % (wt) )就会表现出似固体行为或非末端行为。这些流变特性还会受到粘土的径厚比、化学特性、聚合物基体的分子结构参数和粘土与基体间的相互作用强度等因素的影响。聚合物基粘土纳米复合材料的流变行为是与其微观结构的形成和演化以及聚合物分子链在特定环境下的粘弹松弛过程紧密联系在一起的。本文综述了插层型、剥离型和聚合物分子链一端受限剥离型聚合物基粘土纳米复合材料在力场作用下的流变特性和粘弹松弛机理方面的研究进展。  相似文献   

11.
Summary: Conducting polypyrrole (PPy) nanoparticles were synthesized via microemulsion polymerization. PP/PPy nanocomposites were prepared by melt-mixing of polypyrrole with polypropylene (PP) and processed with injection molding. Tensile tests have revealed that increasing amount of PPy increased the strength and the stiffness of the nanocomposite while limiting the elongation of PP. Thermal gravimetric analysis has showed that incorporation of PPy nanoparticles has improved the thermal stability of the nanocomposites. Increasing amount of PPy nanoparticles increases the conductivity of nonconductive PP up to 2,4.10−4 Scm−1. The same techniques were used to characterize nanocomposites containing 2% w dispersant. Composites prepared with dispersant have involved smaller dimension PPy nanoparticles and exhibited improvement in some mechanical and thermal properties.  相似文献   

12.
Two different ternary nanocomposites, PPy/CNT/CoFe2O4 and PPy/CNT/NiFe2O4, were synthesized by in situ polymerization method. The resulting composites were characterized using Fourier transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction. They were evaluated with the aim of investigating microwave absorption properties. The results showed that the value of microwave reflection decreases as that of prepared nanocomposites increases. This happens with increase in the PPy content and polymerization on the surface.  相似文献   

13.
Organic–inorganic hybrid nanocomposites composed of conductive polypyrrole (PPy) and surface modified silica (SiO2) were successfully prepared through an in situ chemical oxidative polymerization in supercritical carbon dioxide (scCO2). SiO2 nanoparticles were surface modified using 3‐methacryloxypropyltrimethoxysilane (MPTMS) in order to disperse well in the medium. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) showed that the SiO2 nanoparticles were encapsulated into the polymer. UV‐visible spectra of the diluted colloidal dispersions of PPy/SiO2 hybrid nanocomposites were similar to those of PPy system. Fourier transform infrared spectroscopy (FT‐IR) suggested the strong interaction between PPy and SiO2. Surface characterizations of nanocomposites were described by X‐ray photoelectron spectroscopy (XPS). The nanocomposites synthesized in scCO2 have been shown to possess higher electrical conductivity and thermal stability. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
In this study, polypyrrole-clay (PPy-clay) composites were prepared by the in situ chemical oxidative polymerisation of pyrrole in the presence of clay. The chemical structures of the composites were characterised by FTIR and XRD analysis. The thermal properties of these novel composites were analysed by TGA and DSC measurements. Glass-transition temperatures and char yields increased with the increase in clay content in the nanocomposites. The interactions between PPy and clay were mainly between polypyrrole and the layers of clay. It was observed that, as the amount of clay in the composites increased, the dielectric permittivity decreased while the dielectric conductivity of the composite materials increased.  相似文献   

15.
The influence of two concentrations of clay nanoparticles on the nonisothermal crystallization behavior of the intercalated polypropylene-clay nanocomposites is investigated here. It is observed that the crystallization peak temperature (Tp) of PP-clay nanocomposites is marginally higher than neat PP at various cooling rates. Furthermore, the half-time for crystallization (t0.5) decreased with increase in clay content, implying the nucleating role of clay nanoparticles. The nonisothermal crystallization data is analyzed using Avrami, Ozawa and Mo and coworkers methods. The validity of kinetic models on the nonisothermal crystallization process of PP-clay nanocomposites is discussed. The approach developed by Mo and coworkers successfully describes the nonisothermal crystallization behavior of PP and PP-clay nanocomposites. The activation energy for nonisothermal crystallization of pure PP and PP-clay nanocomposites based on Kissinger method is evaluated.  相似文献   

16.
Structure‐property relationships in exfoliated polyisoprene (PI)/clay nanocomposites have been studied as a function of the clay concentration with rheometry, X‐ray diffraction, small‐angle X‐ray scattering, and transmission electron microscopy. The results presented here indicate that the interlayer spacing of layered silicates increases from 2 to at least approximately 14 nm because of the penetration of polymer molecules into the spacing between the silicate layers. The average aspect ratio (width/thickness) of the dispersed nanoplates is also estimated to be at least approximately 80. Additionally, the storage modulus of the nanocomposite exhibits frequency‐independent pseudo‐solidlike behavior above the percolation threshold [volume fraction of clay at the percolation threshold (?p) = 0.02] and shows large enhancements (up to approximately six orders of magnitude) in comparison with the storage modulus of PI when the volume fraction of clay (?) is greater than ?p. For the shear‐aligned PI/clay nanocomposites, an increase in the storage modulus with shear alignment is observed at ? < ?p, whereas a decrease in the storage modulus is observed for ? > ?p. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1000–1009, 2004  相似文献   

17.
Composite films of polyethylene (PE) and polypyrrole (PPy) were prepared by polymerization of PPy on an ultradrawn polyethylene film with high modulus and high strength in ferric chloride (FeCl3) aqueous solution. The electrical conductivity of the composite film was found to be related to the polymerization conditions, such as polymerization temperature, polymerization time, the concentration and the oxidation potential of the FeCl3 solution. Scanning electron microscopy, FTIR and 13C NMR spectra were used to elucidate the morphological and structural variations of PPy prepared under different conditions, which lead to the differences in the electrical properties of the resultant composite films. The best electrical conductivity of the composite was about 5.5 S/cm for the film prepared under optimum conditions. The Young's modulus and the tensile strength reached 80 GPa and 3.2 GPa, respectively, which indicated the successful production of a conductive polymer with high strength and high modulus.  相似文献   

18.
The effect of organo‐modified clay (Cloisite 93A) on the crystal structure and isothermal crystallization behavior of isotactic polypropylene (iPP) in iPP/clay nanocomposites prepared by latex technology was investigated by wide angle X‐ray diffraction, differential scanning calorimetry and polarized optical microscopy. The X‐ray diffraction results indicated that the higher clay loading promotes the formation of the β‐phase crystallites, as evidenced by the appearance of a new peak corresponding to the (300) reflection of β‐iPP. Analysis of the isothermal crystallization showed that the PP nanocomposite (1% C93A) exhibited higher crystallization rates than the neat PP. The unfilled iPP matrix and nanocomposites clearly shows double melting behavior; the shape of the melting transition progressively changes toward single melting with increasing crystallization temperature. The fold surface free energy (σe) of polymer chains in the nanocomposites was lower than that in the PP latex (PPL). It should be reasonable to treat C93A as a good nucleating agent for the crystallization of PPL, which plays a determinant effect on the reduction in σe during the isothermal crystallization of the nanocomposites. The activation energy, ΔEa, decreased with the incorporation of clay nanoparticles into the matrix, which in turn indicates that the nucleation process is facilitated by the presence of clay. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1927–1938, 2010  相似文献   

19.
《印度化学会志》2022,99(11):100772
The incorporation of transition metal oxide fillers into the polymer matrix through solution mixing polymerization imparts enhanced electrical and thermal properties. The present work focused on the optical properties, crystallinity, thermal stability, temperature-dependent conductivity, dielectric constant and modulus of chlorinated polyethylene/copper alumina (CPE/Cu–Al2O3) nanocomposites. Optical absorption measured using an ultraviolet–visible (UV–visible) spectrometer shows enhanced intensity and a blue shift for CPE/Cu–Al2O3 nanocomposites. The bandgap energy of CPE/Cu–Al2O3 nanocomposites was lower than pure CPE and minimum bandgap energy was recorded for a 7 wt% composites. The X-ray diffraction demonstrates that Cu–Al2O3 nanoparticles were uniformly introduced into the CPE matrix. Thermogravimetric analysis (TGA) manifests improved thermal stability of nanocomposites. Dielectric properties decrease with frequency, whereas AC conductivity increases with frequency, and both AC conductivity and dielectric properties increase with temperature. The maximum AC conductivity and dielectric constant were obtained for 7 wt % nanofiller loaded sample. For all systems, the activation energy for electrical conductivity decreases with rising temperatures. The experimental dielectric constant values of CPE nanocomposites were correlated with different theoretical models. The Bruggeman model was in good agreement with the experimental permittivity. The impedance experiments showed a decreasing trend with temperature, indicating the semiconducting nature of prepared nanocomposites.  相似文献   

20.

New polypyrrole (PPy)-derived polymer/ZrO2 nanocomposite materials are prepared by single-step oxidative polymerization of pyrrole (Py) and/or N-methylpyrrole (mPy) in the presence of HCl-functionalized ZrO2 nanoparticles and ammonium persulfate. The physicochemical features of the PPy–ZrO2, poly(Py-co-mPy)–ZrO2 and PmPy–ZrO2 hybrids were analyzed by XPS, FTIR, XRD and UV–Vis techniques. To explore the advantages of these nanocomposites for potential applications, their thermal, conductive and electrochemical properties were investigated. The characterization reveals that a chemical bonding, based on electrostatic interactions, is established between the polymers and the ZrO2 nanoparticles. Interestingly, it is found that the growth of polymer on the surface of Cl-functionalized ZrO2 becomes more significant as the Py moiety (–NH– species) content in the polymer increases. The thermal stability and conductivity of the polymers increase by hybridization with the ZrO2 nanoparticles. This is assigned to the affective interaction of the polymers with the ZrO2 nanoparticles. Particularly, the resulting nanocomposites keep high conductivities, ranging between 0.323 and 0.929 S cm−1. Finally, voltammetric characterization shows that the PPy–ZrO2 and poly(Py-co-mPy)–ZrO2 nanocomposites are electroactive, thus demonstrating their capability for electrochemical applications. These results highlight the great influence of the nanoparticle interface and the nature of monomer on the nanocomposite formation and properties.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号