首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The wing-graph W(G) of a graph G has all edges of G as its vertices; two edges of G are adjacent in W(G) if they are the nonincident edges (called wings) of an induced path on four vertices in G. Hoàng conjectured that if W(G) has no induced cycle of odd length at least five, then G is perfect. As a partial result towards Hoàng's conjecture we prove that if W(G) is triangulated, then G is perfect. © 1997 John Wiley & Sons, Inc.  相似文献   

2.
Let G=(V, E) be a graph where every vertex vV is assigned a list of available colors L(v). We say that G is list colorable for a given list assignment if we can color every vertex using its list such that adjacent vertices get different colors. If L(v)={1, …, k} for all vV then a corresponding list coloring is nothing other than an ordinary k‐coloring of G. Assume that W?V is a subset of V such that G[W] is bipartite and each component of G[W] is precolored with two colors taken from a set of four. The minimum distance between the components of G[W] is denoted by d(W). We will show that if G is K4‐minor‐free and d(W)≥7, then such a precoloring of W can be extended to a 4‐coloring of all of V. This result clarifies a question posed in 10. Moreover, we will show that such a precoloring is extendable to a list coloring of G for outerplanar graphs, provided that |L(v)|=4 for all vV\W and d(W)≥7. In both cases the bound for d(W) is best possible. © 2009 Wiley Periodicals, Inc. J Graph Theory 60: 284‐294, 2009  相似文献   

3.
The geodetic numbers of graphs and digraphs   总被引:1,自引:0,他引:1  
For every two vertices u and v in a graph G,a u-v geodesic is a shortest path between u and v.Let I(u,v)denote the set of all vertices lying on a u-v geodesic.For a vertex subset S,let I(S) denote the union of all I(u,v)for u,v∈S.The geodetic number g(G)of a graph G is the minimum cardinality of a set S with I(S)=V(G).For a digraph D,there is analogous terminology for the geodetic number g(D).The geodetic spectrum of a graph G,denoted by S(G),is the set of geodetic numbers of all orientations of graph G.The lower geodetic number is g~-(G)=minS(G)and the upper geodetic number is g~ (G)=maxS(G).The main purpose of this paper is to study the relations among g(G),g~-(G)and g~ (G)for connected graphs G.In addition,a sufficient and necessary condition for the equality of g(G)and g(G×K_2)is presented,which improves a result of Chartrand,Harary and Zhang.  相似文献   

4.
Let G be a mixed glaph which is obtained from an undirected graph by orienting some of its edges. The eigenvalues and eigenvectors of G are, respectively, defined to be those of the Laplacian matrix L(G) of G. As L(G) is positive semidefinite, the singularity of L(G) is determined by its least eigenvalue λ1 (G). This paper introduces a new parameter edge singularity εs(G) that reflects the singularity of L(G), which is the minimum number of edges of G whose deletion yields that all the components of the resulting graph are singular. We give some inequalities between εs(G) and λ1 (G) (and other parameters) of G. In the case of εs(G) = 1, we obtain a property on the structure of the eigenvectors of G corresponding to λ1 (G), which is similar to the property of Fiedler vectors of a simple graph given by Fiedler.  相似文献   

5.
 Let G be a graph and W a subset of V(G). Let g,f:V(G)→Z be two integer-valued functions such that g(x)≤f(x) for all xV(G) and g(y)≡f(y) (mod 2) for all yW. Then a spanning subgraph F of G is called a partial parity (g,f)-factor with respect to W if g(x)≤deg F (x)≤f(x) for all xV(G) and deg F (y)≡f(y) (mod 2) for all yW. We obtain a criterion for a graph G to have a partial parity (g,f)-factor with respect to W. Furthermore, by making use of this criterion, we give some necessary and sufficient conditions for a graph G to have a subgraph which covers W and has a certain given property. Received: June 14, 1999?Final version received: August 21, 2000  相似文献   

6.
Let G be a connected graph and η(G)=Sz(G)−W(G), where W(G) and Sz(G) are the Wiener and Szeged indices of G, respectively. A well-known result of Klav?ar, Rajapakse, and Gutman states that η(G)≥0, and by a result of Dobrynin and Gutman η(G)=0 if and only if each block of G is complete. In this paper, a path-edge matrix for the graph G is presented by which it is possible to classify the graphs in which η(G)=2. It is also proved that there is no graph G with the property that η(G)=1 or η(G)=3. Finally, it is proved that, for a given positive integer k,k≠1,3, there exists a graph G with η(G)=k.  相似文献   

7.
A graph G is called distance-regularized if each vertex of G admits an intersection array. It is known that every distance-regularized graph is either distance-regular (DR) or distance-biregular (DBR). Note that DBR means that the graph is bipartite and the vertices in the same color class have the same intersection array. A (k, g)-graph is a k-regular graph with girth g and with the minimum possible number of vertices consistent with these properties. Biggs proved that, if the line graph L(G) is distance-transitive, then G is either K1,n or a (k, g)-graph. This result is generalized to DR graphs by showing that the following are equivalent: (1) L(G) is DR and GK1,n for n ≥ 2, (2) G and L(G) are both DR, (3) subdivision graph S(G) is DBR, and (4) G is a (k, g)-graph. This result is used to show that a graph S is a DBR graph with 2-valent vertices iff S = K2,′ or S is the subdivision graph of a (k, g)-graph. Let G(2) be the graph with vertex set that of G and two vertices adjacent if at distance two in G. It is shown that for a DBR graph G, G(2) is two DR graphs. It is proved that a DR graph H without triangles can be obtained as a component of G(2) if and only if it is a (k, g)-graph with g ≥ 4.  相似文献   

8.
Let G be an undirected connected graph that is not a path. We define h(G) (respectively, s(G)) to be the least integer m such that the iterated line graph Lm(G) has a Hamiltonian cycle (respectively, a spanning closed trail). To obtain upper bounds on h(G) and s(G), we characterize the least integer m such that Lm(G) has a connected subgraph H, in which each edge of H is in a 3-cycle and V(H) contains all vertices of degree not 2 in Lm(G). We characterize the graphs G such that h(G) — 1 (respectively, s(G)) is greater than the radius of G.  相似文献   

9.
A set S of vertices of a graph G is a geodetic set if every vertex of G lies in an interval between two vertices from S. The size of a minimum geodetic set in G is the geodetic number g(G) of G. We find that the geodetic number of the lexicographic product G°H for a non-complete graph H lies between 2 and 3g(G). We characterize the graphs G and H for which g(G°H)=2, as well as the lexicographic products T°H that enjoy g(T°H)=3g(G), when T is isomorphic to a tree. Using a new concept of the so-called geodominating triple of a graph G, a formula that expresses the exact geodetic number of G°H is established, where G is an arbitrary graph and H a non-complete graph.  相似文献   

10.
Let G be a planar graph and let g(G) and Δ(G) be its girth and maximum degree, respectively. We show that G has an edge‐partition into a forest and a subgraph H so that (i) Δ(H) ≤ 4 if g(G) ≥ 5; (ii) Δ(H) ≤ 2 if g(G) ≥ 7; (iii) Δ(H)≤ 1 if g(G) ≥ 11; (iv) Δ(H) ≤ 7 if G does not contain 4‐cycles (though it may contain 3‐cycles). These results are applied to find the following upper bounds for the game coloring number colg(G) of a planar graph G: (i) colg(G) ≤ 8 if g(G) ≥ 5; (ii) colg(G)≤ 6 if g(G) ≥ 7; (iii) colg(G) ≤ 5 if g(G) ≥ 11; (iv) colg(G) ≤ 11 if G does not contain 4‐cycles (though it may contain 3‐cycles). © 2002 Wiley Periodicals, Inc. J Graph Theory 41: 307–317, 2002  相似文献   

11.
We give a best possible Dirac-like condition for a graph G so that its line graph L(G) is subpancyclic, i.e., L(G) contains a cycle of length l for each l between 3 and the circumference of G. The result verifies the conjecture posed by Xiong (Pancyclic results in hamiltonian line graphs, in: Combinatorics and Graph Theory '95, vol. 2, Proceedings of the Summer School and International Conference on Combinatorics, World Scientific). © 1998 John Wiley & Sons, Inc. J Graph Theory 27: 67–74, 1998  相似文献   

12.
A proper edge coloring of a graph G is called acyclic if there is no 2-colored cycle in G. The acyclic edge chromatic number of G, denoted by a′(G), is the least number of colors in an acyclic edge coloring of G. Alon et al. conjectured that a′(G) ⩽ Δ(G) + 2 for any graphs. For planar graphs G with girth g(G), we prove that a′(G) ⩽ max{2Δ(G) − 2, Δ(G) + 22} if g(G) ⩾ 3, a′(G) ⩽ Δ(G) + 2 if g(G) ⩾ 5, a′(G) ⩽ Δ(G) + 1 if g(G) ⩾ 7, and a′(G) = Δ(G) if g(G) ⩾ 16 and Δ(G) ⩾ 3. For series-parallel graphs G, we have a′(G) ⩽ Δ(G) + 1. This work was supported by National Natural Science Foundation of China (Grant No. 10871119) and Natural Science Foundation of Shandong Province (Grant No. Y2008A20).  相似文献   

13.
A total coloring of a graph G is a coloring of all elements of G, i.e., vertices and edges, in such a way that no two adjacent or incident elements receive the same color. Let L(x) be a set of colors assigned to each element x of G. Then a list total coloring of G is a total coloring such that each element x receives a color contained in L(x). The list total coloring problem asks whether G has a list total coloring. In this paper, we first show that the list total coloring problem is NP-complete even for series-parallel graphs. We then give a sufficient condition for a series-parallel graph to have a list total coloring, that is, we prove a theorem that any series-parallel graph G has a list total coloring if |L(v)|min{5,Δ+1} for each vertex v and |L(e)|max{5,d(v)+1,d(w)+1} for each edge e=vw, where Δ is the maximum degree of G and d(v) and d(w) are the degrees of the ends v and w of e, respectively. The theorem implies that any series-parallel graph G has a total coloring with Δ+1 colors if Δ4. We finally present a linear-time algorithm to find a list total coloring of a given series-parallel graph G if G satisfies the sufficient condition.  相似文献   

14.
图和线图的谱性质   总被引:5,自引:0,他引:5  
Let G be a simple connected graph with n vertices and m edges,Lo be the line graph of G and λ1(LG)≥λ2 (LG)≥...≥λm(LG) be the eigenvalues of the graph LG,.. In this paper, the range of eigenvalues of a line graph is considered. Some sharp upper bounds and sharp lower bounds of the eigenvalues of Lc. are obtained. In oarticular,it is oroved that-2cos(π/n)≤λn-1(LG)≤n-4 and λn(LG)=-2 if and only if G is bipartite.  相似文献   

15.
Recently, Mader [ 7 ] proved that every 2k‐connected graph with girth g(G) sufficiently large is k‐linked. We show here that g(G ≥ 11 will do unless k = 4,5. If k = 4,5, then g(G) ≥ 19 will do. © 2003 Wiley Periodicals, Inc. J Graph Theory 45: 48–50, 2004  相似文献   

16.
Given graphs G, H, and lists L(v) ? V(H), v ε V(G), a list homomorphism of G to H with respect to the lists L is a mapping f : V(G) → V(H) such that uv ε E(G) implies f(u)f(v) ε E(H), and f(v) ε L(v) for all v ε V(G). The list homomorphism problem for a fixed graph H asks whether or not an input graph G, together with lists L(v) ? V(H), v ε V(G), admits a list homomorphism with respect to L. In two earlier papers, we classified the complexity of the list homomorphism problem in two important special cases: When H is a reflexive graph (every vertex has a loop), the problem is polynomial time solvable if H is an interval graph, and is NP‐complete otherwise. When H is an irreflexive graph (no vertex has a loop), the problem is polynomial time solvable if H is bipartite and H is a circular arc graph, and is NP‐complete otherwise. In this paper, we extend these classifications to arbitrary graphs H (each vertex may or may not have a loop). We introduce a new class of graphs, called bi‐arc graphs, which contains both reflexive interval graphs (and no other reflexive graphs), and bipartite graphs with circular arc complements (and no other irreflexive graphs). We show that the problem is polynomial time solvable when H is a bi‐arc graph, and is NP‐complete otherwise. In the case when H is a tree (with loops allowed), we give a simpler algorithm based on a structural characterization. © 2002 Wiley Periodicals, Inc. J Graph Theory 42: 61–80, 2003  相似文献   

17.
The concept of the line graph can be generalized as follows. The k-line graph Lk(G) of a graph G is defined as a graph whose vertices are the complete subgraphs on k vertices in G. Two distinct such complete subgraphs are adjacent in Lk(G) if and only if they have in G k ? 1 vertices in common. The concept of the total graph can be generalized similarly. Then the Perfect Graph Conjecture will be proved for 3-line graphs and 3-total graphs. Moreover, perfect 3-line graphs are not contained in any of the known classes of perfect graphs. © 1993 John Wiley & Sons, Inc.  相似文献   

18.
The clique graph K(G) of a graph is the intersection graph of maximal cliques of G. The iterated clique graph Kn(G) is inductively defined as K(Kn?1(G)) and K1(G) = K(G). Let the diameter diam(G) be the greatest distance between all pairs of vertices of G. We show that diam(Kn(G)) = diam(G) — n if G is a connected chordal graph and n ≤ diam(G). This generalizes a similar result for time graphs by Bruce Hedman.  相似文献   

19.
A proper vertex coloring of a graph G is linear if the graph induced by the vertices of any two color classes is the union of vertex-disjoint paths. The linear chromatic number lc(G) of the graph G is the smallest number of colors in a linear coloring of G. In this paper, we prove that every graph G with girth g(G) and maximum degree Δ(G) that can be embedded in a surface of nonnegative characteristic has lc(G) = Δ(2G )+ 1 if there is a pair (Δ, g) ∈ {(13, 7), (9, 8), (7, 9), (5, 10), (3, 13)} such that G s...  相似文献   

20.
With each nonempty graph G one can associate a graph L(G), called the line graph of G, with the property that there exists a one-to-one correspondence between E(G) and V(L(G)) such that two vertices of L(G) are adjacent if and only if the corresponding edges of G are adjacent. For integers m ≥ 2, the mth iterated line graph Lm(G) of G is defined to be L(Lm-1(G)). A graph G of order p ≥ 3 is n-Hamiltonian, 0 ≤ np ? 3, if the removal of any k vertices, 0 ≤ kn, results in a Hamiltonian graph. It is shown that if G is a connected graph with δ(G) ≥ 3, where δ(G) denotes the minimum degree of G, then L2(G) is (δ(G) ? 3)-Hamiltonian. Furthermore, if G is 2-connected and δ(G) ≥ 4, then L2(G) is (2δ(G) ? 4)-Hamiltonian. For a connected graph G which is neither a path, a cycle, nor the graph K(1, 3) and for any positive integer n, the existence of an integer k such that Lm(G) is n-Hamiltonian for every mk is exhibited. Then, for the special case n = 1, bounds on (and, in some cases, the exact value of) the smallest such integer k are determined for various classes of graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号