首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Confocal Raman microscopy (CRM) of biofilms enables one to determine the distribution of different microorganisms and other substances inside physiological intact microbial communities. These biofilms are of outstanding interest for biological wastewater treatment. In contrast to invasive techniques, such as fluorescent in situ hybridization (FISH), we were able to identify anaerobically ammonium-oxidising (anammox) bacteria without pretreatment processes of the samples just by its Raman vibrational signature. The presented results provide new insights into the complex interactions of different organisms in microbial communities without interfering with them.  相似文献   

2.
The precise control of the ambient humidity during contact angle measurements is needed to obtain stable and valid data. For a such purpose, a simple low-cost device was designed, and several modified surfaces relevant to biosensor design were studied. Static contact angle values for these surfaces are lower than advancing contact angles published for ambient conditions, indicating that thermodynamic equilibrium conditions are needed to avoid drop evaporation during the measurements.  相似文献   

3.
The surface free energy of polyacrylonitrile carbon fibers was investigated by using the Wilhelmy technique. The difference in surface free energy between immersion and emersion was observed for the carbon fiber pyrolyzed at 2500 °C.In contrast, the hysteresis disappeared with repyrolyzation of the carbon fibers at 3000 °C. Auger electron spectroscopic analysis indicated that the surface of the latter carbon fiber (repyrolyzed at 3000 °C) consisted of the basal planes of graphite. Rough surface topography of the carbon fiber repyrolyzed at 3000 °C, as observed by scanning electron microscope, did not affect the hysteresis. Therefore, the contact angle hysteresis was attributed to the chemical adsorbants on the activation sites of the fiber surfaces, as detected by Auger electron spectroscopy.  相似文献   

4.
Confocal scanning laser microscopy (CSLM) is an optical microscopic technique that, among other advantages, can provide high-resolution images from different depths of a three-dimensional object, therefore rendering invasive techniques unnecessary for sample preparation. CSLM in fluorescence mode is a powerful technique in biological applications and in the microscopy of food materials. The main goal of the present study is to develop the appropriate strategies so that CSLM can be used for membrane fouling characterization during the filtration of protein solutions. Single and binary solutions of BSA–fluorescein and ovalbumin–Texas red conjugates were filtered using 0.8 μm polycarbonate membranes. Samples of the membranes at the end of the filtration runs were analyzed by CSLM. A standardized protocol for sample analysis by CSLM was developed and applied in this study. The most significant results show that CSLM can be used to visualize BSA–fluorescein and ovalbumin–Texas red conjugates on top of and inside the membranes, and that they can be distinguished when they jointly foul the membrane. Finally, if the appropriate sectioning is applied a 3D reconstruction of the membrane and the adsorbed/deposited protein can be obtained which give information on the fouling morphology.  相似文献   

5.
The phenomenon of contact angle hysteresis was studied on smooth films of polyimide, a polymer type used in the microelectronic industry, by dynamic cycling contact angle measurements based on axisymmetric drop shape analysis-profile in combination with variable angle spectroscopic ellipsometry (VASE). It was found that both advancing and receding contact angles became smaller with increasing the number of cycles and are, therefore, not a property of the dry solid alone. The changes of the wetting behavior during these dynamic cycling contact angle measurements are attributed mainly to swelling and/or liquid retention. To reveal the water-induced changes of the polymer film, the polyimide surface was studied before and after the contact with a water droplet by VASE. Both the experimental ellipsometric spectrum for Delta and that for Psi as well as the corresponding simulations show characteristic shifts due to the contact with water. The so-called effective medium approximation was applied to recover information about the thickness and effective optical constants of the polymer layer from the ellipsometrically measured values of Delta and Psi. On the basis of these results, the swelling and retention behavior of the polyimide films in contact with water droplets were discussed.  相似文献   

6.
Irradiation of metallic surfaces using ultra-short pulse laser results in a dual-scale structure. While metallic surfaces are superhydrophilic immediately after laser irradiation, prolonged exposure to air renders surfaces superhydrophobic due to surface reactions and deposition of carbonaceous materials onto the surface. In this work, we have fabricated a paraboloid microstructure, which is analyzed thermodynamically through the use of the Gibbs free energy to obtain the equilibrium contact angle and contact angle hysteresis. The effects of the geometrical details on maximizing the superhydrophobicity of the nanopatterned surface are also discussed in an attempt to design surfaces with desired and/or optimum wetting characteristics.  相似文献   

7.
 Foam films drawn from suspensions of the phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC) in water/ethanol mixtures were used for the investigation of the relation between the properties of the monolayers and the interaction between the film surfaces. The film thickness and the contact angle between the film and the meniscus were measured as a function of the temperature in a range around the temperature of the main phase transition for the lipid. Additionally, fluorescence microscopy was applied to investigate the distribution of a fluorescent lipidlike dye in the surface of the film and the meniscus. From the contact angle the free energy of film formation was calculated. At the temperature of the chain-melting phase transition the film thickness decreases by 0.7 nm. This can be related to a decrease in the thickness of the hydrocarbon layers of the lipid monolayers at this temperature. The decrease in the film thickness leads to a reduction in the free energy by increasing the van der Waals attraction between the film surfaces. No structures were observed in the monolayers of the film in the fluorescence investigation. However, on formation of the very thin equilibrium film the dye was expelled from the film area, indicating an increase in the packing density of the lipid, if the monolayers are in adhesive contact in the film. Received: 31 January 2000 Accepted: 25 February 2000  相似文献   

8.
Well-measured contact angles with different solid-liquid systems fall approximately on smooth patterns when plotted versus liquid surface tension. However, there are deviations of 1 degrees -3 degrees , which are outside the error limits. It is the purpose of this paper to elucidate the reasons for such deviations. Two types of liquids were selected for advancing contact angle measurements on Teflon AF 1600 coated surfaces: a series of n-alkanes ranging from n-hexane to n-hexadecane and five liquids consisting of bulky molecules, octamethylcyclotetrasiloxane (OMCTS), methyl salicylate, tetralin, cis-decalin, and octamethyltrisiloxane (OMTS). It was found that contact angles of the liquids with bulky molecules fall on a perfectly smooth curve corresponding to a solid surface tension of 13.64 +/- 0.1 mJ/m2. However, contact angles of n-alkanes deviated from this curve by up to 3 degrees in a complicated fashion. The observed trend suggests that more than one mechanism is responsible for the deviations. Substrate-induced rearrangement of liquid molecules in the close vicinity of the surface in the case of long-chain n-alkanes and adsorption of vapor onto the solid surface in the case of short-chain n-alkanes are the most likely explanations. The results suggest that liquids with bulky molecules appear to be suitable for contact angle measurements to characterize energetics of polymeric surfaces.  相似文献   

9.
The interaction of the glycoalkaloid tomatine with monolayers of dimyristoylphosphatidylcholine (DMPC) and cholesterol, as well as other selected sterols, has been investigated using surface pressure measurements at constant area and Brewster angle microscopy (BAM). The interaction of tomatine with sterol monolayers is found to vary with the structure of the sterol. The interaction of tomatine with cholesterol-containing monolayers results in a surface pressure increase accompanied by the appearance of a mottled texture. Morphological changes are observed that suggest the formation of tomatine-cholesterol complexes that aggregate at the water-air interface. No morphology change observable by BAM is observed for monolayers containing epicholesterol, suggesting that the stereochemistry of hydrogen bonding between the sterol and the sugar units on tomatine is of particular significance. Strong interactions are observed with cholestanol- and coprostanol-containing monolayers, and BAM reveals formation of spiked aggregates upon interaction with 7:3 mole ratio DMPC/coprostanol mixed monolayers. More modest surface pressure changes are observed for cholestenone- and epicoprostanol-containing monolayers. A much smaller surface pressure increase is observed when tomatine is injected beneath a pure DMPC monolayer.  相似文献   

10.
A new methodology capable of providing reliable and reproducible contact angle (theta) data has been employed to study the effect of clinical treatments grinding, acid etching, and deproteinization on medial dentin tissue. It is based on the application of the ADSA-CD algorithm to the determination of low-rate dynamic contact angles, obtained from slowly growing drops, and on contact angle measurement, as well as spreading behavior analysis, during the relaxation of the system (water on treated dentin) after initial drop growth. The theta data obtained were substantially more reproducible than those obtained with classical methods. A net effect of the treatment on theta was found, increasing dentin wettability: theta (polished) >theta (etched) >theta (deproteinized). The spreading rates correlate with the angles and are adequate for the dentin surface characterization. ANOVA and SNK tests show that for advancing contact angles the means corresponding to all treatments are significantly different. In the relaxing phase, mean angle and spreading rates on polished dentin differ significantly from those on etched and deproteinized dentin, but the latter do not differ significantly from each other.  相似文献   

11.
A method for measuring the pair interaction potential between colloidal particles by extrapolation measurement of collective structure to infinite dilution is presented and explored using simulation and experiment. The method is particularly well suited to systems in which the colloid is fluorescent and refractive index matched with the solvent. The method involves characterizing the potential of mean force between colloidal particles in suspension by measurement of the radial distribution function using 3D direct visualization. The potentials of mean force are extrapolated to infinite dilution to yield an estimate of the pair interaction potential, U(r). We use Monte Carlo simulation to test and establish our methodology as well as to explore the effects of polydispersity on the accuracy. We use poly-12-hydroxystearic acid-stabilized poly(methyl methacrylate) particles dispersed in the solvent dioctyl phthalate to test the method and assess its accuracy for three different repulsive systems for which the range has been manipulated by addition of electrolyte.  相似文献   

12.
Recent experimental (low-rate) dynamic contact angles for 14 solid surfaces are interpreted in terms of their solid surface tensions. Universality of these experimental contact angle patterns is illustrated; other reasons that can cause data to deviate from the patterns are discussed. It is found that surface tension component approaches do not reflect physical reality. Assuming solid surface tension is constant for one and the same solid surface, experimental contact angle patterns are employed to deduce a functional relationship to be used in conjunction with the Young equation to determine solid surface tensions. The explicit form of such a relation is obtained by modifying Berthelot’s rule together with experimental data; essentially constant solid surface tension values are obtained, independent of liquid surface tension and molecular structure. A new combining rule is also derived based on an expression similar to one used in molecular theory; such a combining rule should allow a better understanding of the molecular interactions between unlike solid–liquid pairs.  相似文献   

13.
Certain pairs of paramagnetic species generated under conservation of total spin angular momentum are known to undergo magnetosensitive processes. Two prominent examples of systems exhibiting these so-called magnetic field effects (MFEs) are photogenerated radical pairs created from either singlet or triplet molecular precursors, and pairs of triplet states generated by singlet fission. Here, we showcase confocal microscopy as a powerful technique for the investigation of such phenomena. We first characterise the instrument by studying the field-sensitive chemistry of two systems in solution: radical pairs formed in a cryptochrome protein and the flavin mononucleotide/hen egg-white lysozyme model system. We then extend these studies to single crystals. Firstly, we report temporally and spatially resolved MFEs in flavin-doped lysozyme single crystals. Anisotropic magnetic field effects are then reported in tetracene single crystals. Finally, we discuss the future applications of confocal microscopy for the study of magnetosensitive processes with a particular focus on the cryptochrome-based chemical compass believed to lie at the heart of animal magnetoreception.

Confocal microscopy is showcased as a powerful technique for the measurement of spatiotemporally-resolved magnetic field effects in both solutions and single crystals.  相似文献   

14.
The surface chemical modification of microcrystalline cellulose and cellulose fibers obtained from different sugar cane bagasse pulping processes, viz. Kraft, organosolv ethanol/water and organosolv/supercritical carbon dioxide, were studied in heterogeneous conditions using modest amounts of octadecanoyl and dodecanoyl chloride. The ensuing surfaces acquired a non-polar character, suitable for incorporating these fibers as reinforcing agents in composite materials based on polymeric matrices. The success of these chemical modifications was assessed by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, elemental analysis, scanning electron microscopy (SEM) and contact angle measurements. In particular, the dynamic and equilibrium contact angle measurements, before and after the treatments, revealed that the value of the polar component (gamma(s)p) of the surface energy had decreased very considerably following the modification.  相似文献   

15.
Talc samples in both sheet and powder form are studied by adsorption calorimetry and adsorption isotherm techniques. A model is used to determine the solid surface energy, the solid surface tension and the dispersive, acidic, and basic components of these terms. These results are introduced in an approximate equation relating adsorption to contact angle data. Experimental contact angles are in correct agreement with this approach. The Neumann equation of state is used to fit the data and discussed. It appears as a numerical form of the general equation taking into account gas adsorption and film pressure. Behaviors of talc in contact with liquids do not appear very different whether the solid is in sheet or powder form.  相似文献   

16.
The development of model materials and image processing methods to directly visualize and quantify colloidal rod assembly by means of confocal laser scanning microscopy (CLSM) is reported. Monodisperse fluorescent colloidal rods are prepared by the uniaxial extensional deformation of sterically stabilized microspheres at elevated temperatures. The particles are stably dispersed in refractive index matching mixed organic solvents for CLSM. An image processing algorithm is developed to detect rod backbones and extract particle centroids and orientation angles from the CLSM image volumes. By means of these methods we quantify the distribution of rod orientation angles in self-assembled structures of rods formed by sedimentation. We find the observations to be consistent with aspect-ratio-dependent jamming and orientational order/disorder transition in the rod sediments.  相似文献   

17.
Contact angle data, measured by using a sessile drop arrangement in conjunction with Axisymmetric Drop Shape Analysis-contact Diameter (ADSA-CD), were used to quantify the effects of ammonia gas plasma treatment on the surface properties of previously untreated polystyrene surfaces. The surface tension of treated polystyrene samples is considerably higher than that of untreated samples. The increase in surface tension following plasma treatment is attributed to the addition of amine groups to the surface.Next, conformational changes following the attachment of poly-L-lysine to the untreated samples by simple adsorption and plasma treated samples by covalent bonding were investigated. Surface tension values obtained from contact angle data indicate that conformational changes to poly-L-lysine occur in both cases, because these values are lower than the surface tension of poly-L-lysine in solution. However, contact angle data show that covalently bonded poly-L-lysine undergoes less conformational changes than simply adsorbed poly-L-lysine.  相似文献   

18.
The nature of the cholesterol/glycolipid interaction in rafts being poorly understood, the interaction of cholesterol with the GM3 ganglioside has been studied by surface pressure measurements and fluorescence microscopy. Results have been compared to those obtained with sphingomyelin (SM)-cholesterol and palmitoyl-oleoyl-phosphatidylcholine (POPC)–cholesterol monolayers. The analysis of (πA) isotherms of mixed monolayers show a condensing effect of cholesterol on GM3 molecules, in the same range than the effect observed with POPC and higher than the effect on SM. This is likely due to the similar state of GM3 and POPC, since both molecules are in liquid expanded phases in our experimental conditions. The study of the cholesterol desorption induced by β-cyclodextrin suggests also that the GM3–cholesterol interaction is rather weak as in the case of POPC–cholesterol interaction, and clearly lower than SM–cholesterol one. This lack of interaction is discussed in terms of nature of lipid chains and molecular shape, and suggests that no hydrogen bond is formed between GM3 and cholesterol polar heads. Fluorescence microscopy performed on mixed GM3–cholesterol monolayers shows the presence, at surface pressure higher than 10 mN/m, of particular blurring patterns without defined boundary, which could be due to a partial solubilization in one phase of different phases observed at lower surface pressure, whereas SM–cholesterol and POPC–cholesterol monolayers are homogeneous at the lateral resolution of our microscopy set-up.  相似文献   

19.
In this work we have used different and complementary interfacial techniques (surface film balance, Brewster angle microscopy, and interfacial shear rheology), to analyze the static (structure, topography, reflectivity, miscibility, and interactions) and flow characteristics (surface shear characteristics) of milk protein (beta-casein, caseinate, and beta-lactoglobulin) and monoglyceride (monopalmitin and monoolein) mixed films spread and adsorbed on the air-water interface. The structural, topographical, and shear characteristics of the mixed films depend on the surface pressure and on the composition of the mixed film. The surface shear viscosity (eta(s)) varies greatly with the surface pressure (pi). In general, the greater the pi values, the greater were the values of eta(s). Moreover, the eta(s) value is also sensitive to the miscibility and/or displacement of film-forming components at the interface. At surface pressures lower than that for protein collapse, protein and monoglyceride coexist at the air-water interface. At surface pressures higher than that for the protein collapse, a squeezing of collapsed protein domains by monoglycerides was deduced. Near to the collapse point, the mixed film is dominated by the presence of the monoglyceride. Different proteins and monoglycerides show different interfacial structure, topography, and shear viscosity values, confirming the importance of protein and monoglyceride structure in determining the interfacial characteristics (interactions) of mixed films. The values of eta(s) are lower for disordered (beta-casein or caseinate) than for globular (beta-lactoglobulin) proteins and for unsaturated (monoolein) than for saturated (monopalmitin) monoglycerides in the mixed film. The displacement of the protein by the monoglycerides is facilitated under shear conditions.  相似文献   

20.
In this paper, an original experimental method is developed for local strain characterization at the surface of additively manufactured polymeric materials. The process used herein is material extrusion. This experimental method is based on the use of microscopic speckle pattern deposited at the surface of micro single edge notched specimen (μ_SENT) made of acrylonitrile butadiene styrene (ABS). Two configurations of filament orientation were used for the specimen manufacturing. Images of the μ_SENT specimen surface were recorded during in-situ tensile test. The quantitative analysis of images was made by digital image correlation (DIC). The evolutions of the local strain heterogeneities and the crack tip are evidenced on the kinematic fields. It is shown that the crack propagates in the low resistance path which is the interface area between filaments. It is also evidenced that the intersection of perpendicular filaments in two adjacent layers blocks crack growth. The local strain evolutions at the surface of the specimen are compared to the macroscopic response of the material. The method developed herein allows the determination of the materials mechanical properties. The identification of the crack tip location using digital image correlation (DIC) and J-integral calculation lead to plot the J-R curve. The J-R curves comparison of the two specimen configurations shows that the fracture toughness is directly related to the material structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号