共查询到20条相似文献,搜索用时 15 毫秒
1.
Madelyn W. Colonnese 《School science and mathematics》2020,120(3):129-143
Mathematical writing recently has been defined as writing to reason and communicate mathematically. But mathematics instructional resources lack guidance for teachers as to how to implement such writing. The purpose of this paper is to describe how methods of design-based research were used to develop an instructional resource when one does not currently exist. Thirty-four participants—including teachers, mathematics coaches, mathematics curriculum developers, literacy coaches, a mathematician, and academics in elementary mathematics education, mathematics education, writing education, and science education—participated in a multi-step process to recommend, revise, and confirm instructional guidelines for elementary mathematical writing. The development process began with thirty-two recommendations from science writing and language arts writing. Through multiple cycles of feedback, five instructional guidelines and related considerations and techniques for implementation of elementary mathematical writing emerged. 相似文献
2.
《School science and mathematics》2018,118(5):169-178
Mathematical modeling has been highlighted recently as Common Core State Standards for Mathematics (CCSSM) included Model with Mathematics as one of the Standards for Mathematical Practices (SMP) and a modeling strand in the high school standards. This common aspect of standards across most states in the United States intended by CCSSM authors and policy makers seems to mitigate the diverse notions of mathematical modeling. When we observed secondary mathematics preservice teachers (M‐PSTs) who learned about the SMP and used CCSSM modeling standards to plan and enact lessons, however, we noted differences in their interpretations and enactments of the standards, despite their attendance in the same course sections during a teacher preparation program. This result led us to investigate the ways the M‐PSTs understood modeling standards, which could provide insights into better preparing teachers to teach mathematical modeling. We present the contrasting ways in which M‐PSTs presented modeling related to their conceptions of mathematical modeling, choices of problems, and enactments over an academic year, connecting their practices to extant research. We consider this teaching and research experience as an opportunity to make significant changes in our instruction that may result in our students enhanced implementation of mathematical modeling. 相似文献
3.
Daniel Lee McGee Funda Gonulates Theodore Hodgson Meredith Brewer 《School science and mathematics》2020,120(4):220-231
This article presents a large-scale longitudinal study of hundreds of students across the state of Kentucky that participated in a dual-focus mathematics intervention initiative when they were in the third grade. Rather than an exclusive focus on intervention, this initiative focused on both (i) high quality pull-out intervention and (ii) coherence between pull-out intervention and classroom instruction. The study found that over half of the third grade intervention students that participated in this initiative were classified as “novice” (the lowest possible performance category) on state standardized mathematics assessments at the end of the third grade. However, over the course of the following four years, the novice reduction rate of these students was significantly (p < .01) greater than other novices in Kentucky that did not participate in the initiative. These findings indicate that when implementing intervention initiatives to help students that are struggling with mathematics, it may be important to establish coherence between pull-out intervention and classroom instruction. The long term impact of this approach among traditionally underrepresented minorities suggest that this publication may provide insight into important equity issues where long-term analyses may sometimes be needed to capture the full impact of intervention initiatives. 相似文献
4.
Rebekah Hammack Paul Gannon Christine Foreman Elijah Meyer 《School science and mathematics》2020,120(7):413-424
With the recent national emphasis on preparing children for future careers in science, technology, engineering, and mathematics, K-12 teachers are being called upon to include engineering in their instruction. This study explores the impacts of a summer professional development (PD) program focused on the engineering applications of mathematics and science on in-service K-12 teachers' (a) personal engineering efficacy, (b) engineering teaching efficacy, and (c) perceived barriers to teaching engineering. This quantitative study revealed that a single engineering-focused PD could increase teachers' personal engineering efficacy and engineering teaching efficacy and reduce particular perceived barriers to teaching engineering. No differences existed in pre- to post workshop assessment scores based on grade level taught, gender, or years of teaching experiences. However, pre- to post workshop assessment differences existed between participants depending on the discipline they taught and wether or not they had previously used engineering activities in their classrooms. These findings suggest that a single engineering PD can have significant impacts on in-service teachers' personal engineering efficacy, engineering teaching efficacy, and perceived barriers to teaching engineering, but a one-size-fits-all approach to such PD is not equally effective for all participants. 相似文献
5.
Carolyn Parker Jeffrey Grigg Stephanie D'Souza Charlie Mitchell Erica Smith 《School science and mathematics》2020,120(6):364-374
This article reports findings from a study of an integrated science, technology, engineering, and mathematics (STEM) education program on student interest and awareness in science and engineering. The analysis features grade 3–5 students from a high-poverty, urban school system in the Mid-Atlantic region. Through the quantitative analysis of closed ended survey responses and the qualitative analysis of an open-ended query, we describe how the adoption of an intensive STEM-focused partnership could influence students’ early interest in and awareness of science and engineering as disciplines and careers. The analysis of the student responses revealed that after 1 year of the project, the students enrolled in the program demonstrated developing interest in science and engineering and were better able to articulate a greater understanding of engineering as a discipline. These findings have implications for the effectiveness of an integrated STEM approach for upper elementary students participating and succeeding in the STEM fields. 相似文献
6.
Timothy N. Surrette 《School science and mathematics》2020,120(3):175-188
A challenge for public schools is to successfully support and professionally develop early career teachers (ECTs) and thereby prepare them for long and successful careers in education. The purpose of this qualitative research study was to describe how the professional practices of early career science and mathematics teachers, some of whom are career changers, were influenced by their interactions with mentors and professional communities. Topics examined included the contextual elements that influenced the ECTs’ interactions with mentors and professional communities, how teachers positioned themselves within multiple professional communities, and how they perceived these experiences had influenced the development of their teaching practice. An extensive semi-structured interview of the ECTs generated data that were analyzed to identify emergent themes and patterns. The findings of this study indicated that navigating professional communities and interacting with mentors had influenced the ECTs’ decisions to adopt important components of a learner-centered approach to teaching that included engaging students in active learning processes, utilizing formative assessment, and responding to students' individual needs. These findings have implications for school policies and approaches related to supporting and professionally developing unique cohorts of ECTs. 相似文献
7.
Janet Tassell Natasha E. Gerstenschlager Toni Syzmanski Savannah Denning 《School science and mathematics》2020,120(6):333-344
Innovation is more imperative now than ever before given the upcoming shortage in prepared teachers and the need to produce students with a strong knowledge of mathematics. A sense of urgency is impacting teacher education/preparation programs as instructional practices need to discover how to arm teachers to increase the number of students to be not only college-ready but also desiring to pursue Science, Technology, Engineering, and Mathematics majors. As such, the purpose of this study, was to determine how the four variables (mindfulness, mathematics anxiety, self-efficacy, and mindset) are interconnected within preservice elementary teachers (PSETs), and how we as teacher educators can better address these variables within our own PSETs. Each semester included three seminars with similar overall foci including the four variables. Participants in this study were recruited from Elementary Education students at an east south central regional university enrolled in a mathematics methods course. Thirty-seven participants were divided into control (N = 20) and treatment (N = 17). In this article, we present both qualitative and quantitative results from our mixed-methods study that considered these questions. With the results of this study revealing an inter-connectedness among the four variables, this research further informs the teacher educator community. 相似文献
8.
Lynn C. Hart Susan S. Auslander Nicole Venuto Tiffany Jacobs Jody Carothers Cliff Chestnutt 《School science and mathematics》2019,119(1):3-13
The purpose of this study was to review the existing research on affect (beliefs, attitudes, and emotions) of elementary prospective teachers (EPTs) in university mathematics content courses. We use as our time period from publication in the United States of the Curriculum and Evaluation Standards for Schools Mathematics through 2016. A search of a combination of electronic databases and targeted international journals resulted in a total of 11 studies that looked at some aspect of affect with EPTs in all or some part of a university mathematics course over the 27‐year time period. Nine of the 11 studies occurred in the context of a course or courses categorized as involving an alternative pedagogy that was student‐centered. Overall we found that a student‐centered approach to instruction supported changes in EPTs’ affect that align with pedagogical recommendations in reform documents such as the NCTM Standards. However, shifts were sometimes difficult to come by and encountered resistance from EPTs. Implications for course learning experiences are offered and conflicting results between studies suggest directions for future research. 相似文献
9.
Sven Trenholm Lara Alcock Carol Robinson 《International Journal of Mathematical Education in Science & Technology》2013,44(8):1197-1221
Research suggests it is difficult to learn mathematics in the fully asynchronous online (FAO) instructional modality, yet little is known about associated teaching and assessment practices. In this study, we investigate FAO mathematics assessment and feedback practices in particular consideration of both claims and findings that these practices have a powerful influence on learning.A survey questionnaire was constructed and completed by 70 FAO undergraduate mathematics instructors, mostly from the USA, who were each asked to detail their assessment and feedback practices in a single FAO mathematics course. Alongside these questions, participants also answered the 16-item version of the Approaches to Teaching Inventory. In addition, a novel feedback framework was also created and used to examine how feedback practices may be related to participants' approaches to teaching.Results show that assessment and feedback practices are varied and complex: in particular, we found there was not a simple emphasis on summative assessment instruments, nor a concomitant expectation these would always be invigilated. Though richer assessment feedback appears to be emphasized, evidence suggests this feedback may not be primarily directed at advancing student learning. Moreover, we found evidence of a reliance on computer--human interactions (e.g. via computer-assisted assessment systems) and further evidence of a decline in human interactions, suggesting a dynamic that is both consistent with current online learning theory and claims FAO mathematics courses are becoming commodified. Several avenues for further research are suggested. 相似文献
10.
An attempt is made to suggest some ultimate goals for mathematics education beyond the narrow framework of the mathematics curriculum. On the other hand, there is an attempt to tie mathematics education to these goals by pointing at some principles which direct mathematical behavior as well as educated behavior. The main claim is that both mathematical behavior and educated behavior are supposed to be directed by rational thinking. 相似文献
11.
Matthew Perkins Coppola 《School science and mathematics》2019,119(3):161-170
Research indicates there is a need for teachers to experience multiple mastery experiences with engineering teaching in order to improve teaching engineering self‐efficacy. To prepare future K–5 teachers to teach the engineering design process, one science methods course integrated 2‐day engineering mini‐units into the class meeting and school‐based field experience. The preservice teachers participated as students in an exemplar mini‐unit and then designed their own mini‐unit, which they later taught to K–5 students. Pre‐ and post‐testing of the preservice teachers indicated significant improvement in engineering pedagogical content knowledge self‐efficacy, engagement self‐efficacy, and disciplinary self‐efficacy. Significant improvement was not observed in engineering outcome expectancy. 相似文献
12.
This paper presents qualitative and quantitative approaches to exploring teachers’ experiences of mathematics anxiety (for learning and doing mathematics) and mathematics teaching anxiety (for instructing others in mathematics), the relationship between these types of anxiety and test/evaluation anxiety, and the impacts of anxiety on experiences in teacher education. Findings indicate that mathematics anxiety and mathematics teaching anxiety may be similar (i.e., that preservice teachers perceive a logical continuity and cumulative effect of their experiences of mathematics anxiety as learners in K–12 classrooms that impacts their work as teachers in future K–12 classrooms). Further, anxiety is not limited to occurring in evaluative settings, but when anxiety is triggered by thoughts of evaluation, preservice teachers may be affected by worrying about their own as well as their students' performances. The implications for preservice experiences within a teacher education program and for impacting future students are discussed. 相似文献
13.
Olov Viirman 《International Journal of Mathematical Education in Science & Technology》2013,44(8):1165-1181
This paper investigates the teaching practices used by university mathematics teachers when lecturing, a topic within university mathematics education research which is gaining an increasing interest. In the study, a view of mathematics teaching as a discursive practice is taken, and Sfard's commognitive framework is used to investigate the teaching practices of seven Swedish university mathematics teachers on the topic of functions. The present paper looks at the discourse of mathematics teaching, presenting a categorization of the didactical routines into three categories – explanation, motivation and question posing routines. All of these are present in the discourses of all seven teachers, but within these general categories, a number of different sub-categories of routines are found, used in different ways and to different extent by the various teachers. The explanation routines include known mathematical facts, summary and repetition, different representations, everyday language, and concretization and metaphor; the motivation routines include reference to utility, the nature of mathematics, humour and result focus; and the question posing routines include control questions, asking for facts, enquiries and rhetorical questions. This categorization of question posing routines, for instance, complements those already found in the literature. In addition to providing a valuable insight into the teaching of functions at the university level, the categorizations presented in the study can also be useful for investigating the teaching of other mathematical topics. 相似文献
14.
15.
《School science and mathematics》2018,118(5):144-155
Professional development (PD) programs focused on increasing teachers' use of formative assessment generally provide a framework designed to help teachers understand the breadth and complexity of formative assessment, while advocating for teacher choice with respect to the specific implementation. This study examined the implementation patterns of 82 high school mathematics and science teachers to understand whether implementation approaches differed by content area. Results suggested that mathematics and science teachers significantly increased their self‐reported practice of formative assessment, in similar ways; however, the specific approaches that mathematics and science teachers chose to operationalize on a daily basis differed. These findings have implications for the design of PD and future research efforts. 相似文献
16.
《School science and mathematics》2018,118(5):156-168
The study was situated in a National Science Foundation supported Math Science Partnership between a private university and an urban school district. This study sought to understand the decision‐making process of elementary teachers as they implement an integrated science, technology, engineering, and mathematics (STEM) curriculum in their classrooms and the interactions that occur between the teachers and curriculum during that process. This qualitative study utilized a comparative case study approach to understanding the decision‐making process of three elementary teachers enacting the same lesson. Analysis of the interactions revealed that the teachers' perceptions of student ability, their pedagogical design capacity, and time were influences that impacted implementation. These findings have implications for STEM‐focused professional development of elementary teachers. 相似文献
17.
Mathematics and science have similar learning processes (SLPs) and it has been proposed that courses focused on these and other similarities promote transfer across disciplines. However, it is not known how the use of these processes in lessons taught to children change throughout a preservice teacher education course or which are most likely to transfer within and between disciplines. Three hundred and ninety lesson plans written by 113 preservice teachers (PSTs) from 10 sections of an elementary mathematics/science methods course were analyzed. PSTs taught an eight‐lesson sequence to children: five science lessons followed by three mathematics lessons. The findings suggested that: (a) PSTs needed to only teach three mathematics lessons, after five science lessons, to reach the same number of SLPs used in the five science lessons; (b) some SLPs are highly correlated processes (HCPs) and are more likely to transfer within and between science and mathematics lessons; and (c) PSTs needed to teach no mathematics lessons, after four science lessons, to reach the same number of HCPs used in the four science lessons. Implications include centering courses on multiple and varied representations of learning processes within problem‐solving, and HCPs may be essential similarities of problem‐solving which promote transfer. 相似文献
18.
Laura S. Rodriguez Anita Morzillo John C. Volin Todd Campbell 《School science and mathematics》2020,120(4):244-257
Our research centered on developing the Conservation Science and Technology Identity (CSTI) instruments as an empirical way to measure STEM identities and the intersection of identity constructs such as competence, performance, recognition, and ways of seeing and being. The surveys were used in a large funded multi-year project for teens and adults learning geospatial technologies and conservation science to use in intergenerational community conservation projects. We investigated whether an informal STEM learning program was developing new STEM identities or advancing well-developed identities. The instruments’ content validity was determined through a vetting process from national STEM identity research experts. Reliability was estimated with Cronbach coefficient alpha. Mann-Whitney and Wilcoxon Signed Rank tests were used to determine participants’ STEM identities and the workshop’s effect on specific identity constructs. We found teens and adults had historically similar STEM identities, with stronger conservation science than technology. Both science and technology competences, as well as technology ways of seeing and being, significantly increased, suggesting CSTI can be a valuable instrument in empirically assessing STEM identities. 相似文献
19.
Sharon J. Dixon 《International Journal of Mathematical Education in Science & Technology》2013,44(1):49-63
The primary objective of this study was to investigate the use of a diagnostic test to assess the prepardness of level one students for a sports biomechanics module. During their first week at university, a cohort of 108 students completed a diagnostic test at the end of their first lecture in sports biomechanics, with no prior notice. Upon completion of the 12-week module, the students sat the same diagnostic test, again with no prior notice. The results from the initial test were used to identify areas that required emphasis and additional resources during delivery of the module. The comparison of test results from the two sittings was used as a measure of the level of success of the module in increasing the level of student understanding. It is concluded that the design of a diagnostic test specific to a module can be used both to inform subsequent teaching and to assess success of teaching methods. 相似文献
20.
Yvette L. Everingham Emma Gyuris Sean R. Connolly 《International Journal of Mathematical Education in Science & Technology》2017,48(8):1153-1165
Contemporary science educators must equip their students with the knowledge and practical know-how to connect multiple disciplines like mathematics, computing and the natural sciences to gain a richer and deeper understanding of a scientific problem. However, many biology and earth science students are prejudiced against mathematics due to negative emotions like high mathematical anxiety and low mathematical confidence. Here, we present a theoretical framework that investigates linkages between student engagement, mathematical anxiety, mathematical confidence, student achievement and subject mastery. We implement this framework in a large, first-year interdisciplinary science subject and monitor its impact over several years from 2010 to 2015. The implementation of the framework coincided with an easing of anxiety and enhanced confidence, as well as higher student satisfaction, retention and achievement. The framework offers interdisciplinary science educators greater flexibility and confidence in their approach to designing and delivering subjects that rely on mathematical concepts and practices. 相似文献