首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Science, technology, engineering, and mathematics (STEM) integration is a desired outcome according to Next Generation Science Standards. However, learning to teach integrated STEM content has been challenging for teachers. Consequently, the purpose of this qualitative study was to describe how 16 preservice teachers enrolled in a mathematics methods course created integrated STEM lesson plans that incorporated an authentic engineering problem. Content analysis of the completed integrated STEM lesson plans used the Quality K-12 Engineering Education Framework to identify any characteristics of engineering. We found that 15 of 16 preservice teachers demonstrated at least an emerging ability to create an integrated STEM lesson that contained an engineering problem, constraints, a prototype or model, model testing, and data collection and analysis related to the model. We concluded that giving preservice teachers opportunities to experience engineering design problems could better prepare them to design and implement integrated STEM education in their classrooms. The findings from this study have practical implications for mathematics methods teacher educators who teach the pedagogy behind STEM education. This study also has theoretical implications because socially situated learning theory was extended to Model-Eliciting Activities and connected them to the K-12 Framework for Quality Engineering Education.  相似文献   

2.
This paper examines the implementation of an instructional module on preservice elementary teachers’ professional noticing of children’s mathematical thinking. The module focuses on professional noticing skills through the content focus of early algebraic reasoning and uses complex video vignettes from whole class instruction in authentic elementary mathematics classrooms. Findings indicated that two of the three components of professional noticing (attending and interpreting) showed statistically significant increases in a treatment group that did not occur in a comparison group. The deciding component remains a challenge that warrants further research.  相似文献   

3.
The goal of this article is to inform professional understanding regarding preservice science teachers’ knowledge of engineering and the engineering design process. Originating as a conceptual study of the appropriateness of “knowledge as design” as a framework for conducting science teacher education to support learning related to engineering design, the findings are informed by an ongoing research project. Perkins’s theory encapsulates knowledge as design within four complementary components of the nature of design. When using the structure of Perkins’s theory as a framework for analysis of data gathered from preservice teachers conducting engineering activities within an instructional methods course for secondary science, a concurrence between teacher knowledge development and the theory emerged. Initially, the individuals, who were participants in the research, were unfamiliar with engineering as a component of science teaching and expressed a lack of knowledge of engineering. The emergence of connections between Perkins’s theory of knowledge as design and knowledge development for teaching were found when examining preservice teachers’ development of creative and systematic thinking skills within the context of engineering design activities as well as examination of their knowledge of the application of science to problem‐solving situations.  相似文献   

4.
This study investigated the effect of a STEAM (science, technology, engineering, arts, and mathematics) methods course on elementary preservice teachers’ (PTs’) perceptions of self-efficacy to teach engineering practices. The course positioned engineering as the primary content area from which to integrate other subjects. To enhance PT’s perception of engineering self-efficacy, the course provided instruction that leveraged the following sources of self-efficacy: cognitive content mastery, cognitive pedagogical mastery, vicarious experience, verbal persuasion, and emotional state. The study also examined to what extent the various sources of self-efficacy contributed to changes in self-efficacy. Data was collected from 14 participants that included a self-efficacy survey and focus group interview. After completing the course, elementary PTs’ self-efficacy to teach engineering practices increased significantly. Qualitative data analysis revealed cognitive pedagogical mastery, vicarious experience (specifically simulated modeling), and emotional state were the most influential sources linked to positive changes in self-efficacy, with cognitive content mastery, and other forms of vicarious experience contributing, but to a lesser degree. These results suggest that teacher preparation programs can better support elementary PTs to teach engineering practices by offering additional methods courses focused on engineering, rather than providing short-term exposure to engineering practices and pedagogy in overloaded science methods courses.  相似文献   

5.
A deep conceptual understanding of elementary mathematics as appropriate for teaching is increasingly thought to be an important aspect of elementary teacher capacity. This study explores preservice teachers’ initial mathematical understandings and how these understandings developed during a mathematics methods course for upper elementary teachers. The methods course was supplemented by a newly designed optional course in mathematics for teaching. Teacher candidates choosing the optional course were initially weaker in terms of mathematical understanding than their peers, yet showed stronger mathematical development after engaging in the extra hours the optional course provided.  相似文献   

6.
To make progress toward ambitious and equitable goals for students’ mathematical development, teachers need opportunities to develop specialized ways of knowing mathematics such as mathematical knowledge for teaching (MKT) for their work with students in the classroom. Professional learning communities (PLCs) are a common model used to support focused teacher collaboration and, in turn, foster teacher development, instructional improvement, and student outcomes. However, there is a lack of specificity in what is known about teachers’ work in PLCs and what teachers can gain from those experiences, despite broad claims of their benefit. We discuss an investigation of the work of secondary mathematics teachers in PLCs at two high schools to describe and explicate possible opportunities for teachers to develop the mathematical knowledge needed for the work of teaching and the ways in which these opportunities may be pursued or hindered. The findings show that, without pointed focus on mathematical content, opportunities to develop MKT can be rare, even among mathematics teachers. Two detailed images of teacher discussion are shared to highlight these claims. This article contributes to the ongoing discussion about the affordances and limitations of PLCs for mathematics teachers, considerations for their use, and how they can be supported.  相似文献   

7.
The purpose of the current study was to evaluate the impact of co‐taught integrated STEM methods instruction on preservice elementary teachers’ self‐efficacy for teaching science and mathematics within an integrated STEM framework. Two instructional methods courses (Elementary Mathematics Methods and Elementary Science Methods) were redesigned to include STEM integration components, including STEM model lessons co‐taught by a mathematics and science educator, as well as a special education colleague. Quantitative data were gathered at three time points in the semester (beginning, middle, and end) from 55 preservice teachers examining teacher self‐efficacy for integrated STEM teaching. Qualitative data were gathered from a purposeful sample of seven preservice teachers to further understand preservice teachers’ perceptions on delivering integrated STEM instruction in an elementary setting. Quantitative results showed a significant increase in teacher self‐efficacy across all three time points. Item‐level analysis revealed that self‐efficacy for tasks involving engineering and assessment (both formative and summative) were low across time points, while self‐efficacy for tasks involving technology and flexibility were consistently high. Qualitative results revealed that the preservice teachers did not feel adequately prepared by university‐level science and mathematics courses, in terms of content knowledge and integration of science and mathematics for elementary students.  相似文献   

8.
This study examined (a) the differences in preservice teachers’ procedural knowledge in four areas of fraction operations in Taiwan and the United States, (b) the differences in preservice teachers’ conceptual knowledge in four areas of fraction operations in Taiwan and the United States, and (c) correlation in preservice teachers’ conceptual knowledge and procedural knowledge of fractions in Taiwan and the United States. Participants were preservice teachers (N = 49) in a teacher education program in the United States and comparable Chinese preservice teachers (N = 47). Results indicated that Chinese preservice teachers performed better in procedural knowledge on fraction operations than American preservice teachers. No significant differences were found for conceptual knowledge on fraction division. Further, the correlation in this study showed that for Chinese and American preservice teachers, the relationship between conceptual and procedural knowledge of fraction operations was weak.  相似文献   

9.
Applications and modelling have gained a prominent role in mathematics education reform documents and curricula. Thus, there is a growing need for studies focusing on the effective use of mathematical modelling in classrooms. Assessment is an integral part of using modelling activities in classrooms, since it allows teachers to identify and manage problems that arise in various stages of the modelling process. However, teachers’ difficulties in assessing student modelling work are a challenge to be considered when implementing modelling in the classroom. Thus, the purpose of this study was to investigate how teachers’ knowledge on generating assessment criteria for assessing student competence in mathematical modelling evolved through a professional development programme, which is based on a lesson study approach and modelling perspective. The data was collected with four teachers from two public high schools over a five-month period. The professional development programme included a cyclical process, with each cycle consisting of an introductory meeting, the implementation of a model-eliciting activity with students, and a follow-up meeting. The results showed that the professional development programme contributed to teachers’ knowledge for generating assessment criteria on the products, and the observable actions that affect the modelling cycle.  相似文献   

10.
The aim of the study is to examine prospective mathematics teachers’ pedagogical content knowledge in terms of knowledge of understanding students and knowledge of instructional strategies which are the subcomponents of pedagogical content knowledge. The participants of this research consist of 98 prospective teachers who are studying in two universities in Turkey. The participants were selected with the purposive sampling method which is one of the non-random sampling methods. Case study method, which is based on the qualitative research approach, was used. The answers given by secondary school students to fraction-related open-ended questions in the study of Soylu and Soylu were used as the data collection tool. The obtained data were analyzed via the content analysis technique. The analyses showed that the prospective mathematics teachers’ pedagogical content knowledge on fractions was not at an adequate level in identifying and correcting students’ errors. However, it was observed that the prospective teachers experienced more difficulty in the knowledge of instructional strategies compared to the knowledge of understanding students.  相似文献   

11.
We investigated beginning secondary science teachers’ understandings of the science and engineering practice of developing and using models. Our study was situated in a scholarship program that served two groups: undergraduate STEM majors interested in teaching, or potential teachers, and graduate students enrolled in a teacher education program to earn their credentials, or preservice teachers. The two groups completed intensive practicum experiences in STEM‐focused academies within two public high schools. We conducted a series of interviews with each participant and used grade‐level competencies outlined in the Next Generation Science Standards to analyze their understanding of the practice of developing and using models. We found that potential and preservice teachers understood this practice in ways that both aligned and did not align with the NGSS and that their understandings varied across the two groups and the two practicum contexts. In our implications, we recommend that teacher educators recognize and build from the various ways potential and preservice teachers understand this complex practice to improve its implementation in science classrooms. Further, we recommend that a variety of practicum contexts may help beginning teachers develop a greater breadth of understanding about the practice of developing and using models.  相似文献   

12.
Science teacher educators use examples of practice to support teacher candidates (TCs) learning to engage in new forms of science teaching. However, interpretation of these examples assumes a level of expertise about practice TCs lack. This article describes a study designed to determine some of the differences between expert teachers' and TCs' professional pedagogical vision for science teaching. Specifically, the study examines what each group attends to (highlights) in examples of science teaching and how they interpret the events they attend to (codes). Both groups were asked to analyze video of classroom science teaching. Differences were found between TCs and expert teachers in terms of both highlighting and coding of science teaching practice. Four key areas of difference are described in detail: actor focus, questions, grain size, and enactment. The implications for science teacher education are discussed, in particular a set of tools and teacher education practices to support acculturating TCs into more a sophisticated professional pedagogical vision for science teaching. This article features a Research to Practice Companion Article . Please click on the supporting information link below to access.  相似文献   

13.
Mathematical modeling has been highlighted recently as Common Core State Standards for Mathematics (CCSSM) included Model with Mathematics as one of the Standards for Mathematical Practices (SMP) and a modeling strand in the high school standards. This common aspect of standards across most states in the United States intended by CCSSM authors and policy makers seems to mitigate the diverse notions of mathematical modeling. When we observed secondary mathematics preservice teachers (M‐PSTs) who learned about the SMP and used CCSSM modeling standards to plan and enact lessons, however, we noted differences in their interpretations and enactments of the standards, despite their attendance in the same course sections during a teacher preparation program. This result led us to investigate the ways the M‐PSTs understood modeling standards, which could provide insights into better preparing teachers to teach mathematical modeling. We present the contrasting ways in which M‐PSTs presented modeling related to their conceptions of mathematical modeling, choices of problems, and enactments over an academic year, connecting their practices to extant research. We consider this teaching and research experience as an opportunity to make significant changes in our instruction that may result in our students enhanced implementation of mathematical modeling.  相似文献   

14.
15.
Professional development (PD) programs focused on increasing teachers' use of formative assessment generally provide a framework designed to help teachers understand the breadth and complexity of formative assessment, while advocating for teacher choice with respect to the specific implementation. This study examined the implementation patterns of 82 high school mathematics and science teachers to understand whether implementation approaches differed by content area. Results suggested that mathematics and science teachers significantly increased their self‐reported practice of formative assessment, in similar ways; however, the specific approaches that mathematics and science teachers chose to operationalize on a daily basis differed. These findings have implications for the design of PD and future research efforts.  相似文献   

16.
Research indicates there is a need for teachers to experience multiple mastery experiences with engineering teaching in order to improve teaching engineering self‐efficacy. To prepare future K–5 teachers to teach the engineering design process, one science methods course integrated 2‐day engineering mini‐units into the class meeting and school‐based field experience. The preservice teachers participated as students in an exemplar mini‐unit and then designed their own mini‐unit, which they later taught to K–5 students. Pre‐ and post‐testing of the preservice teachers indicated significant improvement in engineering pedagogical content knowledge self‐efficacy, engagement self‐efficacy, and disciplinary self‐efficacy. Significant improvement was not observed in engineering outcome expectancy.  相似文献   

17.
Innovation is more imperative now than ever before given the upcoming shortage in prepared teachers and the need to produce students with a strong knowledge of mathematics. A sense of urgency is impacting teacher education/preparation programs as instructional practices need to discover how to arm teachers to increase the number of students to be not only college-ready but also desiring to pursue Science, Technology, Engineering, and Mathematics majors. As such, the purpose of this study, was to determine how the four variables (mindfulness, mathematics anxiety, self-efficacy, and mindset) are interconnected within preservice elementary teachers (PSETs), and how we as teacher educators can better address these variables within our own PSETs. Each semester included three seminars with similar overall foci including the four variables. Participants in this study were recruited from Elementary Education students at an east south central regional university enrolled in a mathematics methods course. Thirty-seven participants were divided into control (N = 20) and treatment (N = 17). In this article, we present both qualitative and quantitative results from our mixed-methods study that considered these questions. With the results of this study revealing an inter-connectedness among the four variables, this research further informs the teacher educator community.  相似文献   

18.
Teaching mathematics in university levels is one of the most important fields of research in the area of mathematics education. Nevertheless, there is little information about teaching knowledge of mathematics university teachers. Pedagogical content knowledge (PCK) provides a suitable framework to study knowledge of teachers. The purpose of this paper is to make explicit the perception of mathematics university teachers about PCK. For this purpose, a phenomenological study was done. Data resources included semi-structured interviews with 10 mathematics university teachers who were in different places of the mathematics university teaching experience spectrum. Data analysis indicated a model consisting of four cognitive themes which are mathematics syntactic knowledge, knowledge about mathematics curriculum planning, knowledge about students' mathematics learning and knowledge about creating an influential mathematics teaching–learning environment. Besides, it was found out that three contextual themes influenced on PCK for teaching mathematics in university levels which were the nature of mathematics subjects, university teachers' features and terms of learning environment.  相似文献   

19.
Research indicates that teacher efficacy influences student achievement and is situation specific. With the Next Generation Science Standards calling for the incorporation of engineering practices into K–12 classrooms, it is important to identify teachers’ engineering teaching efficacy. A study of K–5 teachers’ engineering self‐efficacy and engineering teaching efficacy revealed that that they have low engineering self‐efficacy and low teacher efficacy related to engineering pedagogical content knowledge. Additionally, significant differences existed in self‐efficacy levels based on gender, ethnicity, Title I school status, and grade level taught.  相似文献   

20.
This article presents the findings from a study of a mentoring program for novice mathematics and science teachers, which was provided by their teacher education program. This study reports the findings of interviews with novice math and science teachers, their mentors, and the mentoring program administrators to explore stakeholder perceptions of mentoring support. Findings suggest the importance of using multiple mentoring strategies to develop, support, and retain high‐quality math and science teachers in the teaching profession. This study contributes to what is known about the role that teacher education programs may play in mentoring novice math and science teachers who have graduated from their programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号