首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 620 毫秒
1.
This paper describes an application of the multichannel signal processing technique of adaptive decorrelation filtering to the design of an assistive listening system. A simulated "dinner table" scenario was studied. The speech signal of a desired talker was corrupted by three simultaneous speech jammers and by a speech-shaped diffusive noise. The technique of adaptive decorrelation filtering processing was used to extract the desired speech from the interference speech and noise. The effectiveness of the assistive listening system was evaluated by observing improvements in A-weighted signal-to-noise ratio (SNR) and in sentence intelligibility, where the latter was evaluated in a listening test with eight normal hearing subjects and three subjects with hearing impairments. Significant improvements in SNR and sentence intelligibility were achieved with the use of the assistive listening system. For subjects with normal hearing, the speech reception threshold was improved by 3 to 5 dBA, and for subjects with hearing impairments, the threshold was improved by 4 to 8 dBA.  相似文献   

2.
This paper studies the effect of bilateral hearing aids on directional hearing in the frontal horizontal plane. Localization tests evaluated bilateral hearing aid users using different stimuli and different noise scenarios. Normal hearing subjects were used as a reference. The main research questions raised in this paper are: (i) How do bilateral hearing aid users perform on a localization task, relative to normal hearing subjects? (ii) Do bilateral hearing aids preserve localization cues, and (iii) Is there an influence of state of the art noise reduction algorithms, more in particular an adaptive directional microphone configuration, on localization performance? The hearing aid users were tested without and with their hearing aids, using both a standard omnidirectional microphone configuration and an adaptive directional microphone configuration. The following main conclusions are drawn. (i) Bilateral hearing aid users perform worse than normal hearing subjects in a localization task, although more than one-half of the subjects reach normal hearing performance when tested unaided. For both groups, localization performance drops significantly when acoustical scenarios become more complex. (ii) Bilateral, i.e., independently operating hearing aids do not preserve localization cues. (iii) Overall, adaptive directional noise reduction can have an additional and significant negative impact on localization performance.  相似文献   

3.
Paired-comparison judgments of intelligibility of speech in noise were obtained from eight hearing-impaired subjects on a large number of hearing aids simulated by a digital master hearing aid. The hearing aids which comprised a 5 X 5 matrix differed systematically in the amount of low-frequency and high-frequency gain provided. A comparison of three adaptive strategies for determining optimum hearing aid frequency-gain characteristics (an iterative round robin, a double elimination tournament, and a modified simplex procedure) revealed convergence on the same or similar hearing aids for most subjects. Analysis revealed that subjects for whom all three procedures converged on the same hearing aid showed a single pronounced peak in the response surface, while a broader peak was evident for the subjects for whom the three procedures identified similar hearing aids. The modified simplex procedure was found to be most efficient and the iterative round robin least efficient.  相似文献   

4.
The Articulation Index (AI) and Speech Intelligibility Index (SII) predict intelligibility scores from measurements of speech and hearing parameters. One component in the prediction is the "importance function," a weighting function that characterizes contributions of particular spectral regions of speech to speech intelligibility. Previous work with SII predictions for hearing-impaired subjects suggests that prediction accuracy might improve if importance functions for individual subjects were available. Unfortunately, previous importance function measurements have required extensive intelligibility testing with groups of subjects, using speech processed by various fixed-bandwidth low-pass and high-pass filters. A more efficient approach appropriate to individual subjects is desired. The purpose of this study was to evaluate the feasibility of measuring importance functions for individual subjects with adaptive-bandwidth filters. In two experiments, ten subjects with normal-hearing listened to vowel-consonant-vowel (VCV) nonsense words processed by low-pass and high-pass filters whose bandwidths were varied adaptively to produce specified performance levels in accordance with the transformed up-down rules of Levitt [(1971). J. Acoust. Soc. Am. 49, 467-477]. Local linear psychometric functions were fit to resulting data and used to generate an importance function for VCV words. Results indicate that the adaptive method is reliable and efficient, and produces importance function data consistent with that of the corresponding AI/SII importance function.  相似文献   

5.
In this study we investigated the reliability and convergence characteristics of an adaptive multidirectional pattern search procedure, relative to a nonadaptive multidirectional pattern search procedure. The procedure was designed to optimize three speech-processing strategies. These comprise noise reduction, spectral enhancement, and spectral lift. The search is based on a paired-comparison paradigm, in which subjects evaluated the listening comfort of speech-in-noise fragments. The procedural and nonprocedural factors that influence the reliability and convergence of the procedure are studied using various test conditions. The test conditions combine different tests, initial settings, background noise types, and step size configurations. Seven normal hearing subjects participated in this study. The results indicate that the reliability of the optimization strategy may benefit from the use of an adaptive step size. Decreasing the step size increases accuracy, while increasing the step size can be beneficial to create clear perceptual differences in the comparisons. The reliability also depends on starting point, stop criterion, step size constraints, background noise, algorithms used, as well as the presence of drifting cues and suboptimal settings. There appears to be a trade-off between reliability and convergence, i.e., when the step size is enlarged the reliability improves, but the convergence deteriorates.  相似文献   

6.
Many of the 9 million workers exposed to average noise levels of 85 dB (A) and above are required to wear hearing protection devices, and many of these workers have already developed noise-induced hearing impairments. There is some evidence in the literature that hearing-impaired users may not receive as much attenuation from hearing protectors as normal-hearing users. This study assessed real-ear attenuation at threshold for ten normal-hearing and ten hearing-impaired subjects using a set of David Clark 10A earmuffs. Testing procedures followed the specifications of ANSI S12.6-1984. The results showed that the hearing-impaired subjects received slightly more attenuation than the normal-hearing subjects at all frequencies, but these differences were not statistically significant. These results provide additional support to the finding that hearing protection devices are capable of providing as much attenuation to hearing-impaired users as they do to normal-hearing individuals.  相似文献   

7.
Many older people have greater difficulty processing speech at suprathreshold levels than can be explained by standard audiometric configurations. Some of the difficulty may involve the processing of temporal information. Temporal information can signal linguistic distinctions. The voicing distinction, for example, that separates pairs of words such as "rapid" and "rabid" can be signaled by temporal information: longer first vowel and shorter closure characterize "rabid"; shorter vowel and longer closure characterize "rapid." In this study, naturally produced tokens of "rabid" were low-pass filtered at 3500 Hz and edited to create vowel and (silent) closure duration continua. Pure-tone audiograms and speech recognition scores were used to select the ten best-hearing subjects among 50 volunteers over age 55. Randomizations of the stimuli were presented for labeling at intensity levels of 60 and 80 dB HL to this group and to ten normal-hearing volunteers under age 25. Results showed highly significant interactions of age with the temporal factors and with intensity: the older subjects required longer silence durations before reporting "rapid," especially for the shorter vowel durations and for the higher intensity level. These data suggest that age may affect the relative salience of different acoustic cues in speech perception, and that age-related hearing loss may involve deficits in the processing of temporal information, deficits that are not measured by standard audiometry.  相似文献   

8.
Effects of age and mild hearing loss on speech recognition in noise   总被引:5,自引:0,他引:5  
Using an adaptive strategy, the effects of mild sensorineural hearing loss and adult listeners' chronological age on speech recognition in babble were evaluated. The signal-to-babble ratio required to achieve 50% recognition was measured for three speech materials presented at soft to loud conversational speech levels. Four groups of subjects were tested: (1) normal-hearing listeners less than 44 years of age, (2) subjects less than 44 years old with mild sensorineural hearing loss and excellent speech recognition in quiet, (3) normal-hearing listeners greater than 65 with normal hearing, and (4) subjects greater than 65 years old with mild hearing loss and excellent performance in quiet. Groups 1 and 3, and groups 2 and 4 were matched on the basis of pure-tone thresholds, and thresholds for each of the three speech materials presented in quiet. In addition, groups 1 and 2 were similar in terms of mean age and age range, as were groups 3 and 4. Differences in performance in noise as a function of age were observed for both normal-hearing and hearing-impaired listeners despite equivalent performance in quiet. Subjects with mild hearing loss performed significantly worse than their normal-hearing counterparts. These results and their implications are discussed.  相似文献   

9.
Sensorineural hearing loss is accompanied by loudness recruitment, a steeper-than-normal rise of perceived loudness with presentation level. To compensate for this abnormality, amplitude compression is often applied (e.g., in a hearing aid). Alternatively, since speech intelligibility has been modeled as the perception of fast energy fluctuations, enlarging these (by means of expansion) may improve speech intelligibility. Still, even if these signal-processing techniques prove useful in terms of speech intelligibility, practical application might be hindered by unacceptably low sound quality. Therefore, both speech intelligibility and sound quality were evaluated for syllabic compression and expansion of the temporal envelope. Speech intelligibility was evaluated with an adaptive procedure, based on short everyday sentences either in noise or with a competing speaker. Sound quality was measured by means of a rating-scale procedure, for both speech and music. In a systematic setup, both the ratio of compression or expansion and the number of independent processing bands were varied. Individual hearing thresholds were compensated for by a listener-specific filter and amplification. Both listeners with normal hearing and listeners with sensorineural hearing impairment participated as paid volunteers. The results show that, on average, both compression and expansion fail to show better speech intelligibility or sound quality than linear amplification.  相似文献   

10.
This paper evaluates noise reduction techniques in bilateral and binaural hearing aids. Adaptive implementations (on a real-time test platform) of the bilateral and binaural speech distortion weighted multichannel Wiener filter (SDW-MWF) and a competing bilateral fixed beamformer are evaluated. As the SDW-MWF relies on a voice activity detector (VAD), a realistic binaural VAD is also included. The test subjects (both normal hearing subjects and hearing aid users) are tested by an adaptive speech reception threshold (SRT) test in different spatial scenarios, including a realistic cafeteria scenario with nonstationary noise. The main conclusions are: (a) The binaural SDW-MWF can further improve the SRT (up to 2 dB) over the improvements achieved by bilateral algorithms, although a significant difference is only achievable if the binaural SDW-MWF uses a perfect VAD. However, in the cafeteria scenario only the binaural SDW-MWF achieves a significant SRT improvement (2.6 dB with perfect VAD, 2.2 dB with real VAD), for the group of hearing aid users. (b) There is no significant degradation when using a real VAD at the input signal-to-noise ratio (SNR) levels where the hearing aid users reach their SRT. (c) The bilateral SDW-MWF achieves no SRT improvements compared to the bilateral fixed beamformer.  相似文献   

11.
To examine spectral and threshold effects for speech and noise at high levels, recognition of nonsense syllables was assessed for low-pass-filtered speech and speech-shaped maskers and high-pass-filtered speech and speech-shaped maskers at three speech levels, with signal-to-noise ratio held constant. Subjects were younger adults with normal hearing and older adults with normal hearing but significantly higher average quiet thresholds. A broadband masker was always present to minimize audibility differences between subject groups and across presentation levels. For subjects with lower thresholds, the declines in recognition of low-frequency syllables in low-frequency maskers were attributed to nonlinear growth of masking which reduced "effective" signal-to-noise ratio at high levels, whereas the decline for subjects with higher thresholds was not fully explained by nonlinear masking growth. For all subjects, masking growth did not entirely account for declines in recognition of high-frequency syllables in high-frequency maskers at high levels. Relative to younger subjects with normal hearing and lower quiet thresholds, older subjects with normal hearing and higher quiet thresholds had poorer consonant recognition in noise, especially for high-frequency speech in high-frequency maskers. Age-related effects on thresholds and task proficiency may be determining factors in the recognition of speech in noise at high levels.  相似文献   

12.
Loudness functions and frequency difference limens (DLFs) were measured in five subjects with steeply sloping high-frequency sensorineural hearing loss. The stimuli were pulsed pure tones encompassing a range of frequencies. Loudness data were obtained using a 2AFC matching procedure with a 500-Hz reference presented at a number of levels. DLFs were measured using a 3AFC procedure with intensities randomized within 6 dB around an equal-loudness level. Results showed significantly shallower loudness functions near the cutoff frequency of the loss than at a lower frequency, where hearing thresholds were near normal. DLFs were elevated, on average, relative to DLFs measured using the same procedure in five normally hearing subjects, but showed a local reduction near the cutoff frequency in most subjects with high-frequency loss. The loudness data are generally consistent with recent models that describe loudness perception in terms of peripheral excitation patterns that are presumably restricted by a steeply sloping hearing loss. However, the DLF data are interpreted with reference to animal experiments that have shown reorganization in the auditory cortex following the introduction of restricted cochlear lesions. Such reorganization results in an increase in the spatial representation of lesion-edge frequencies, and is comparable with the functional reorganization observed in animals following frequency-discrimination training. It is suggested that similar effects may occur in humans with steeply sloping high-frequency hearing loss, and therefore, the local reduction in DLFs in our data may reflect neural plasticity.  相似文献   

13.
The minimum sensation levels required for optimal temporal gap resolution were measured in five listeners with moderately severe degrees of sensorineural hearing loss. The stimuli were three continuous octave-band noises centered at 0.5, 2.0, and 4.0 kHz. Subjects used a Békésy tracking procedure to determine the minimum signal levels needed to resolve periodic temporal gaps of fixed durations. Analysis of data across subjects and signal revealed only a weak correlation between this minimum SL and the corresponding HLs; most listeners resolved threshold gaps at minimum levels of 25-35 dB SL, independent of degree of hearing loss. The results differ from those of normal subjects with masking-induced hearing loss [Fitzgibbons, Percept. Psychophys. 35, 446-450 (1984)], which showed an inverse relationship between HL and the SLs required for gap threshold. The findings indicate that assessment of optimal gap resolution in listeners with cochlear impairment requires stimulus presentation levels of at least 25-35 dB SL. Even with sufficient stimulus intensity, each of the hearing-impaired listeners exhibited abnormal gap resolution for each octave-band signal.  相似文献   

14.
Threshold characteristics of the human auditory brain stem response   总被引:3,自引:0,他引:3  
Auditory brain stem responses (ABRs) were recorded from ten normal-hearing subjects in response to 100-microseconds clicks from a TDH 49 earphone at a rate of 48 pps and at levels randomly varied in 2-dB steps between 34 and 52 dB p.e. SPL. At each level, 10 000 epochs were averaged with use of a weighted concept and a running estimate was made of the signal-to-noise ratio (SNR). This quantity was used to detect the presence of the ABR and the median threshold was found at 38 dB p.e. SPL. The mean averaged background noise level was 11.3 nVrms, and the "true" ABRrms amplitude function crossed this value at 35.5 dB p.e. SPL, which indicates the level where the SNR = 1. By extrapolation, it was found that the ABR amplitude became zero at 32 dB p.e. SPL. The perceptual thresholds of the click were estimated by means of a modified block up-down procedure, and the median value was found at 33 dB p.e. SPL. The slope of the amplitude function and the magnitude of the averaged background noise are the two factors responsible for the ABR threshold sensitivity, which thus depends on both physiological and technical parameters. Therefore, these have to be considered together with the method of detection when the ABR is used to indicate the hearing sensitivity.  相似文献   

15.
An articulation index calculation procedure developed for use with individual normal-hearing listeners [C. Pavlovic and G. Studebaker, J. Acoust. Soc. Am. 75, 1606-1612 (1984)] was modified to account for the deterioration in suprathreshold speech processing produced by sensorineural hearing impairment. Data from four normal-hearing and four hearing-impaired subjects were used to relate the loss in hearing sensitivity to the deterioration in speech processing in quiet and in noise. The new procedure only requires hearing threshold measurements and consists of the following two modifications of the original AI procedure of Pavlovic and Studebaker (1984): The speech and noise spectrum densities are integrated over bandwidths which are, when expressed in decibels, larger than the critical bandwidths by 10% of the hearing loss. This is in contrast to the unmodified procedure where integration is performed over critical bandwidths. The contribution of each frequency to the AI is the product of its contribution in the unmodified AI procedure and a "speech desensitization factor." The desensitization factor is specified as a function of the hearing loss. The predictive accuracies of both the unmodified and the modified calculation procedures were assessed by comparing the expected and observed speech recognition scores of four hearing-impaired subjects under various conditions of speech filtering and noise masking. The modified procedure appears accurate for general applications. In contrast, the unmodified procedure appears accurate only for applications where results obtained under various conditions on a single listener are compared to each other.  相似文献   

16.
In contrast to clinical click-evoked otoacoustic emission (CEOAE) tests that are inaccurate above 4-5 kHz, a research procedure measured CEOAEs up to 16 kHz in 446 ears and predicted the presence/absence of a sensorineural hearing loss. The behavioral threshold test that served as a reference to evaluate CEOAE test accuracy used a yes-no task in a maximum-likelihood adaptive procedure. This test was highly efficient between 0.5 and 12.7 kHz: Thresholds measured in 2 min per frequency had a median standard deviation (SD) of 1.2-1.5 dB across subjects. CEOAE test performance was assessed by the area under the receiver operating characteristic curve (AUC). The mean AUC from 1 to 10 kHz was 0.90 (SD=0.016). AUC decreased to 0.86 at 12.7 kHz and to 0.7 at 0.5 and 16 kHz, possibly due in part to insufficient stimulus levels. Between 1 and 12.7 kHz, the medians of the magnitude difference in CEOAEs and in behavioral thresholds were <4 dB. The improved CEOAE test performance above 4-5 kHz was due to retaining the portion of the CEOAE response with latencies as short as 0.3 ms. Results have potential clinical significance in predicting hearing status from at least 1 to 10 kHz using a single CEOAE response.  相似文献   

17.
The directivity of an adaptive directional microphone hearing aid (DMHA) cannot be assessed by the method that calls for presenting a "probe" signal from a single loudspeaker to the DMHA that moves to different angles. This method is invalid because the probe signal itself changes the polar pattern. This paper proposes a method for assessing the adaptive DMHA using a "jammer" signal, presented from a second loudspeaker rotating with the DMHA, that simulates a noise source and freezes the polar pattern. Measurement at each angle is obtained by two sequential recordings from the DMHA, one using an input of a probe and a jammer, and the other with an input of the same probe and a phase-inverted jammer. After canceling out the jammer, the remaining response to the probe signal can be used to assess the directivity. In this paper, the new method is evaluated by comparing responses from five adaptive DMHAs to different jammer intensities and locations. This method was shown to be an accurate and reliable way to assess the directivity of the adaptive DMHA in a high-intensity-jammer condition.  相似文献   

18.
Temporal modulation transfer functions were obtained using sinusoidal carriers for four normally hearing subjects and three subjects with mild to moderate cochlear hearing loss. Carrier frequencies were 1000, 2000 and 5000 Hz, and modulation frequencies ranged from 10 to 640 Hz in one-octave steps. The normally hearing subjects were tested using levels of 30 and 80 dB SPL. For the higher level, modulation detection thresholds varied only slightly with modulation frequency for frequencies up to 80 Hz, but decreased for high modulation frequencies. The decrease can be attributed to the detection of spectral sidebands. For the lower level, thresholds varied little with modulation frequency for all three carrier frequencies. The absence of a decrease in the threshold for large modulation frequencies can be explained by the low sensation level of the spectral sidebands. The hearing-impaired subjects were tested at 80 dB SPL, except for two cases where the absolute threshold at the carrier frequency was greater than 70 dB SPL; in these cases a level of 90 dB was used. The results were consistent with the idea that spectral sidebands were less detectable for the hearing-impaired than for the normally hearing subjects. For the two lower carrier frequencies, there were no large decreases in threshold with increasing modulation frequency, and where decreases did occur, this happened only between 320 and 640 Hz. For the 5000-Hz carrier, thresholds were roughly constant for modulation frequencies from 10 to 80 or 160 Hz, and then increased monotonically, becoming unmeasurable at 640 Hz. The results for this carrier may reflect "pure" effects of temporal resolution, without any influence from the detection of spectral sidebands. The results suggest that temporal resolution for deterministic stimuli is similar for normally hearing and hearing-impaired listeners.  相似文献   

19.
Buus and Florentine [J. Assoc. Res. Otolaryngol. 3, 120-139 (2002)] have proposed that loudness recruitment in cases of cochlear hearing loss is caused partly by an abnormally large loudness at absolute threshold. This has been called "softness imperception." To evaluate this idea, loudness-matching functions were obtained using tones at very low sensation levels. For subjects with asymmetrical hearing loss, matches were obtained for a single frequency across ears. For subjects with sloping hearing loss, matches were obtained between tones at two frequencies, one where the absolute threshold was nearly normal and one where there was a moderate hearing loss. Loudness matching was possible for sensation levels (SLs) as low as 2 dB. When the fixed tone was presented at a very low SL in an ear (or at a frequency) where there was hearing impairment, it was matched by a tone with approximately the same SL in an ear (or at a frequency) where hearing was normal (e.g., 2 dB SL matched 2 dB SL). This relationship held for SLs up to 4-10 dB, depending on the subject. These results are not consistent with the concept of softness imperception.  相似文献   

20.
A behavioral response paradigm was used to measure pure-tone hearing sensitivities in two belugas (Delphinapterus leucas). Tests were conducted over a 20-month period at the Point Defiance Zoo and Aquarium, in Tacoma, WA. Subjects were two males, aged 8-10 and 9-11 during the course of the study. Subjects were born in an oceanarium and had been housed together for all of their lives. Hearing thresholds were measured using a modified up/down staircase procedure and acoustic response paradigm where subjects were trained to produce audible responses to test tones and to remain quiet otherwise. Test frequencies ranged from approximately 2 to 130 kHz. Best sensitivities ranged from approximately 40 to 50 dB re 1 microPa at 50-80 kHz and 30-35 kHz for the two subjects. Although both subjects possessed traditional "U-shaped" mammalian audiograms, one subject exhibited significant high-frequency hearing loss above 37 kHz compared to previously published data for belugas. Hearing loss in this subject was estimated to approach 90 dB for frequencies above 50 kHz. Similar ages, ancestry, and environmental conditions between subjects, but a history of ototoxic drug administration in only one subject, suggest that the observed hearing loss was a result of the aminoglycoside antibiotic amikacin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号