首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
矩形通道内横流喷雾掺混流场的实验研究   总被引:2,自引:0,他引:2  
应用PIV系统对矩形通道内横流-喷雾掺混过程中液滴沿横流方向的流场进行了实验测量.分别获得了单喷嘴和双喷嘴下横流掺混中的流场结构,以及液滴的水平速度分布.横流作用下,液滴的最大水平速度为横流速度的两倍左右;反旋涡对降低了液滴的水平速度,提高了液滴在横流中的停留时间.双喷嘴条件下,横流截面上的液滴密集区域呈狭长的三角形,...  相似文献   

2.
This paper examines the vaporization of individual dodecafluoropentane droplets by the application of single ultrasonic tone bursts. High speed video microscopy was used to monitor droplets in a flow tube, while a focused, single element transducer operating at 3, 4, or 10 MHz was aimed at the intersection of the acoustical and optical beams. A highly dilute droplet emulsion was injected, and individual droplets were positioned in the two foci. Phase transitions of droplets were produced by rarefactional pressures as low as 4 MPa at 3 MHz using single, 3.25 micros tone bursts. During acoustic irradiation, droplets showed dipole-type oscillations along the acoustic axis (average amplitude 1.3 microm, independent of droplet diameter which ranged from 5 to 27 microm). The onset of vaporization was monitored as either spot-like, within the droplet, or homogeneous, throughout the droplet's imaged cross section. Spot-like centers of nucleation were observed solely along the axis lying parallel to the direction of oscillation and centered on the droplet. Smaller droplets required more acoustic intensity for vaporization than larger droplets, which is consistent with other experiments on emulsions.  相似文献   

3.
We studied a new kind of W/O emulsions based on a lyotropic liquid crystal as the aqueous droplet phase. The cholesteric phase, a solution hydroxypropyl cellulose in water was dispersed in the continuous oil matrix, paraffin oil or heptane. We made a specific choice of surfactant in order to impose director anchoring conditions at the oil-water interface and orient the liquid crystal inside the droplet. The strong anchoring conditions resulted in a topological defect inside the droplets of size above the critical value R*. The defect elastic energy creates a barrier against droplet coalescence, the effect of topological size selection. We have studied the orientation of the director inside the droplets and their size distribution.  相似文献   

4.
A chemical shift selective NMR flow imaging sequence using stimulated echoes for data acquisition is presented. The sequence was tested using a 20% (vol/vol) oil-water emulsion formed from a soluble cutting oil, which was passed through a simple flow phantom to yield two-dimensional velocity distribution maps of the oil droplets and of the water separately. It was then used to investigate the fluidity of concentration polarisation layers formed from the oil droplets during crossflow membrane filtration of a 5% (vol/vol) emulsion of the same cutting oil. A simple membrane filtration module was used for this purpose, with the feedstock emulsion fed into the lumen of a single tubular membrane at a trans-membrane pressure difference P ∼ 70kPa and crossflow Reynolds number, Re, in the range 100–1000. The results confirm a net axial flow rate < 7.5 μm/s (half digital resolution in the velocity dimension) for the oil polarisation layer. Under these conditions, the upper limit for oil flow tangential to the membrane in the polarised layer is less than 15% of the convective flow of oil towards the membrane.  相似文献   

5.
Two perforated plates with different solidity ratios, S=50% and 67%, were used to investigate the effect of the velocity fluctuations of a subsonic gaseous crossflow on the spray characteristics of a liquid jet including droplet size and velocity distributions. The experiments were conducted over a range of jet-to-crossflow momentum flux ratio of q=16.5-172, and two gas Weber numbers of ?Weg=2.7 and 5.9, corresponding to the enhanced capillary breakup and bag breakup regimes, respectively. The experimental results of this study revealed that the distribution of droplets size associated with a turbulent and a uniform crossflow for each specific breakup regime were approximately identical. The bimodal and single peak distributions of droplets size, respectively, associated with enhanced capillary and bag breakup regimes were generally consistent with the literature reports. However, the transition of the liquid primary breakup regime from enhanced capillary to bag breakup mode was delayed in a turbulent crossflow compared to its uniform counterpart. The general behavior of droplets size-velocity profiles were also consistent with the literature reports. Nonetheless, complex variations in the distribution of droplets velocity when changing the crossflow turbulence intensity were observed and linked with the presence of instabilities on the liquid jet's surface. Finally, the present experiments allowed shedding more light on the reason why the breakup mechanisms of a liquid jet in a conventional uniform crossflow should not be generalized to predict the distinct breakup process of a liquid jet in a turbulent crossflow.  相似文献   

6.
New mechanisms of droplet nucleation and self-organization in ferroelectric membranes are described. The droplets may be accompanied by different number of topological defects (zero, one, two) whose location may be on the droplet boundary or in the membrane. Nucleation and self-organization of droplets with total topological charge S = 0 , S = + 1 and S = - 1 were investigated. We found that an S = - 1 topological defect may be the center of both droplet nucleation and chain formation. This mechanism of chaining drastically differs from the droplet self-organization described earlier which is realized by attraction of droplet-defect pairs. Our observations demonstrate new possibilities for manipulating the inclusions and their self-organization in smectic membranes.  相似文献   

7.
The flocculation of silicone oil-in-water emulsions ( φ = 0.1) containing quasi-monodisperse droplets was studied by ultrasound. The ultrasonic attenuation spectra of emulsions with different particle sizes (200-1600 nm) were measured between 0.5 and 10 MHz using an interferometer. Flocculation was induced by adding excess sodium dodecyl sulphate micelles to the emulsions to increase the attractive forces between the droplets. Droplet flocculation decreased the ultrasonic attenuation at low frequencies because of overlap of the thermal waves caused by the close proximity of the droplets within the flocs. A mean-field model which takes into account this effect was used to determine the droplet volume fraction within the flocs and thus to estimate the distance between the droplets. Received 17 July 2000  相似文献   

8.
Water in oil emulsions are prepared by using an ultra-sonication device and used in an emulsion liquid membrane process in order to recover arsenic (V) ions from an aqueous medium. The aim of this work is the investigation of the effect of emulsifier concentration and composition, and also sonication time on the emulsion droplet size and the extraction efficiency in order to obtain stable emulsions with small droplets that favor the extraction. Results show that ultrasonic waves reduce internal droplet size which enhances the extraction of arsenic. In addition, internal droplet size is decreased initially and then increased by increasing Span 80 concentration. On the other hand, by increasing Span 80 concentration, extraction amount is increased and then decreased. Furthermore, emulsifier blends provide more stability for the emulsion. Increasing concentration of Tween 20 as a hydrophilic emulsifier up to an optimum concentration decreases internal droplet size and increases extraction amount. By increasing sonication time up to 4 min, the internal droplet size is decreased and the extraction amount is increased. If sonication time is increased further, the internal droplet size is increased and the extraction amount is decreased.  相似文献   

9.
Recent optical engine studies have linked increases in NOx emissions from fatty acid methyl ester combustion to differences in the premixed autoignition zone of the diesel fuel jet. In this study, ignition of single, isolated liquid droplets in quiescent, high temperature air was considered as a means of gaining insight into the transient, partially premixed ignition conditions that exist in the autoignition zone of a fatty acid methyl ester fuel jet. Normal gravity and microgravity (10−4 m/s2) droplet ignition delay experiments were conducted by use of a variety of neat methyl esters and commercial soy methyl ester. Droplet ignition experiments were chosen because spherically symmetric droplet combustion represents the simplest two-phase, time-dependent chemically reacting flow system permitting a numerical solution with complex physical submodels. To create spherically symmetric conditions for direct comparison with a detailed numerical model, experiments were conducted in microgravity by use of a 1.1 s drop tower. In the experiments, droplets were grown and deployed onto 14 μm silicon carbide fibers and injected into a tube furnace containing atmospheric pressure air at temperatures up to 1300 K. The ignition event was characterized by measurement of UV emission from hydroxyl radical (OH*) chemiluminescence. The experimental results were compared against predictions from a time-dependent, spherically symmetric droplet combustion simulation with detailed gas phase chemical kinetics, spectrally resolved radiative heat transfer and multi-component transport. By use of a skeletal chemical kinetic mechanism (125 species, 713 reactions), the computed ignition delay period for methyl decanoate (C11H22O2) showed excellent agreement with experimental results at furnace temperatures greater than 1200 K.  相似文献   

10.
Pulsed Field Gradient (PFG) measurements are commonly used to determine emulsion droplet size distributions based on restricted self-diffusion within the emulsion droplets. Such measurement capability is readily available on commercial NMR bench-top apparatus. A significant limitation is the requirement to selectively detect signal from the liquid phase within the emulsion droplets; this is currently achieved using either relaxation or self-diffusion contrast. Here we demonstrate the use of a 1.1 T bench-top NMR magnet, which when coupled with an rf micro-coil, is able to provide sufficient chemical shift resolution such that unambiguous signal selection is achieved from the dispersed droplet phase. We also improve the accuracy of the numerical inversion process required to produce the emulsion droplet size distribution, by employing the Block Gradient Pulse (bgp) method, which partially relaxes the assumptions of a Gaussian phase distribution or infinitely short gradient pulse application inherent in current application. The techniques are successfully applied to size 3 different emulsions.  相似文献   

11.
12.
Power ultrasound is one means among others of mechanically producing emulsions. In spite of numerous publications on the basic principles of this technique, there is insufficient knowledge of continuous ultrasound emulsification processes and the main parameters of practical relevance. A comparison of this system with other continuous mechanical emulsifying devices is made. The effect of continuous phase viscosity on droplet disruption due to ultrasound is the subject of a more detailed investigation. Continuous phase viscosity is varied by means of water soluble stabilizers (o/w systems) and different oils (w/o systems). At constant energy density, droplet size decreases when adding stabilizers, whereas the viscosity of the oil in w/o emulsions has no effect. Qualitative investigations of the local distribution of cavitation have shown very small penetration depths of cavitation into the liquid. This emphasizes the need for improvement of apparatus design to optimize the emulsification process.  相似文献   

13.
The formation of regular colloid patterns in free-standing smectic films at the transition from the smectic-C to the isotropic or nematic phase is well known experimentally. The self-organization of isotropic or nematic droplets is caused by their mutual interaction, mediated by elastic distortions of the local director in the surrounding liquid crystal. These distortions are related to the anchoring conditions of the director at the droplet border. We describe analytically the energetics of the liquid crystal environment of a single droplet in one-constant approximation. A method of complex analysis, Conformal Mapping, is employed. Following a suggestion of Dolganov et al. (Phys. Rev. E. 73, 041706 (2006)), energetics of chain and grid patterns built from the colloids are investigated numerically in order to explain experimentally observed formations and their director fields.  相似文献   

14.
The present work deals with emulsions of volatile alkanes in an aqueous clay suspension, Laponite, which forms a yield stress fluid. For a large enough yield stress (i.e. Laponite concentration), the oil droplets are prevented from creaming and the emulsions are thus mechanically stabilized. We have studied the evaporation kinetics of the oil phase of those emulsions in contact with the atmosphere. We show that the evaporation process is characterized by the formation of a sharp front separating the emulsion from a droplet-free Laponite phase, and that the displacement of the front vs. time follows a diffusion law. Experimental data are confronted to a diffusion-controlled model, in the case where the limiting step is the diffusion of the dissolved oil through the aqueous phase. The nature of the alkane, as well as its volume fraction in the emulsion, has been varied. Quantitative agreement with the model is achieved without any adjustable parameter and we describe the mechanism leading to the formation of a front.  相似文献   

15.
吴宇昊  王伟丽  魏炳波 《物理学报》2016,65(10):106402-106402
本文采用自由落体实验技术和格子玻尔兹曼计算方法研究了低重力条件下液态Fe-Sn-Si/Ge合金的相分离过程. 实验发现, 二种合金液滴在自由下落过程中均发生显著的液相分离, 形成了壳核和弥散组织. 当Fe-Sn-Si合金中的Si元素被等量的Ge元素替换后, 壳核组织中富Fe区和富Sn区的分布次序会发生反转. 计算表明, 在液相分离过程中冷却速率、Marangoni对流和表面偏析对壳核构型的选择和弥散组织的形成起决定性作用.  相似文献   

16.
The metastable liquid phase separation and rapid solidification of Cu60Fe30Co10 ternary peritectic alloy were investigated by using the drop tube technique and the differential scanning calorimetry method. It was found that the critical temperature of metastable liquid phase separation in this alloy is 1623.5 K, and the two separated liquid phases solidify as Cu(Fe,Co) and Fe(Cu,Co) solid solutions, respectively. The undercooling and cooling rate of droplets processed in the drop tube increase with the decrease of their diameters. During the drop tube processing, the structural morphologies of undercooled droplets are strongly dependent on the cooling rate. With the increase of the cooling rate, Fe(Cu,Co) spheres are refined greatly and become uniformly dispersed in the Cu-rich matrix. The calculations of Marangoni migration velocity (V M) and Stokes motion velocity (V S) of Fe(Cu,Co) droplets indicated that Marangoni migration contributes more to the coarsening and congregation of the minor phase during free fall. At the same undercooling, the V M/V S ratio increases drastically as Fe(Cu,Co) droplet size decreases. On the other hand, a larger undercooling tends to increase the V M/V S value for Fe(Cu,Co) droplets with the same size. Supported by the National Natural Science Foundation of China (Grant Nos. 50121101 and 50395105) and the Scientific and Technological Creative Foundation of Youth in Northwestern Polytechnical University of China (Grant No. W016223)  相似文献   

17.
In droplet-based microfluidic platforms, precise separation of microscale droplets of different chemical composition is increasingly necessary for high-throughput combinatorial chemistry in drug discovery and screening assays. A variety of droplet sorting methods have been proposed, in which droplets of the same kind are translocated. However, there has been relatively less effort in developing techniques to separate the uniform-sized droplets of different chemical composition. Most of the previous droplet sorting or separation techniques either rely on the droplet size for the separation marker or adopt on-demand application of a force field for the droplet sorting or separation. The existing droplet microfluidic separation techniques based on the in-droplet chemical composition are still in infancy because of the technical difficulties. In this study, we propose an acoustofluidic method to simultaneously separate microscale droplets of the same volume and dissimilar acoustic impedance using ultrasonic surface acoustic wave (SAW)-induced acoustic radiation force (ARF). For extensive investigation on the SAW-induced ARF acting on both cylindrical and spherical droplets, we first performed a set of the droplet sorting experiments under varying conditions of acoustic impedance of the dispersed phase fluid, droplet velocity, and wave amplitude. Moreover, for elucidation of the underlying physics, a new dimensionless number ARD was introduced, which was defined as the ratio of the ARF to the drag force acting on the droplets. The experimental results were comparatively analyzed by using a ray acoustics approach and found to be in good agreement with the theoretical estimation. Based on the findings, we successfully demonstrated the simultaneous separation of uniform-sized droplets of the different acoustic impedance under continuous application of the acoustic field in a label-free and detection-free manner. Insomuch as on-chip, precise separation of multiple kinds of droplets is critical in many droplet microfluidic applications, the proposed acoustofluidic approach will provide new prospects for microscale droplet separation.  相似文献   

18.
Because of their unusual optical, thermoelectric, and magnetic properties, iron sili- cides have attracted considerable attention in recent years. Among them, particular at- tention has been paid to the orthorhombic semiconducting iron disilicide β-FeSi2 due to its direct band gap of about 0.85 eV at room temperature, which makes it a candidate material to be used in optoelectronic devices in near-infrared light sources and detectors. In addition, β-FeSi2 has good physical and chemical sta…  相似文献   

19.
The influence of droplet crystallization and melting on the ultrasonic properties of oil-in-water emulsions has been investigated. The ultrasonic velocity and attenuation were measured in a series of 3 wt% n-hexadecane-in-water emulsions as a function of frequency (0.3–4 MHz), droplet diameter (0.4 and 1 μm) and temperature (0–25°C). The emulsified n-hexadecane crystallized at about 5°C due to supercooling effects and melted at about 18°C. As solid and liquid n-hexadecane have significantly different ultrasonic properties, an appreciable change in the velocity and attenuation is observed during the phase transition. This behaviour is modified significantly in systems where the emulsion droplets are partially crystalline because the temperature fluctuations associated with the ultrasonic wave can perturb the phase equilibria solid liquid causing excess attenuation and velocity dispersion. The magnitude of this effect depends on the ultrasonic frequency and the average droplet size.  相似文献   

20.
The combustion of two fuels with disparate reactivity such as natural gas and diesel in internal combustion engines has been demonstrated as a means to increase efficiency, reduce fuel costs and reduce pollutant formation in comparison to traditional diesel or spark-ignited engines. However, dual fuel engines are constrained by the onset of uncontrolled fast combustion (i.e., engine knock) as well as incomplete combustion, which can result in high unburned hydrocarbon emissions. To study the fundamental combustion processes of ignition and flame propagation in dual fuel engines, a new method has been developed to inject single isolated liquid hydrocarbon droplets into premixed methane/air mixtures at elevated temperatures and pressures. An opposed-piston rapid compression machine was used in combination with a newly developed piezoelectric droplet injection system that is capable of injecting single liquid hydrocarbon droplets along the stagnation plane of the combustion chamber. A high-speed Schlieren optical system was used for imaging the combustion process in the chamber. Experiments were conducted by injecting diesel droplet of various diameters (50 µm < do < 400 µm), into methane/air mixtures with varying equivalence ratios (0 < ϕ < 1.2) over a range of compressed temperatures (700 K < Tc < 940 K). Multiple autoignition modes was observed in the vicinity of the liquid droplets, which were followed by transition to propagating premixed flames. A computational model was developed with CONVERGE™, which uses a 141 species dual-fuel chemical kinetic mechanism for the gas phase along with a transient, analytical droplet evaporation model to define the boundary conditions at the droplet surface. The simulations capture each of the different ignition modes in the vicinity of the injected spherical diesel droplet, along with bifurcation of the ignition event into a propagating, premixed methane/air flame and a stationary diesel/air diffusion flame.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号