首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
崔春国 《化学学报》1983,41(10):927-933
A method of simultaneous determination of copper (II), lead (II) and cadmium (II) in sulphuric acid-iocide ion medium was established by derivative anodic stripping voltammetry (DASV) on the gold electrode. The peak theights of lead and cadmium were increased by enhancement effect of iodide ion and the peaks of bismuth and copper were well formed and completely resolved on gold electrode in the presence of iodide ion, therefore peak of copper is not affected by bismuth. The sensitivities for copper, lead and cadmium were very high and their peak potentials in the stripping voltammogram were +0.25, -0.2 and -0.27 volt, respectively. The dependence of peak height of these elemets on their concentrations was linear. The detection limits for copper, lead and cadmium were 0.2 0.2 and 0.05 ppb, respectively. We have further studied the electrode process by means of triangle cyclic voltammetry and proved that he electrode reaction of copper is reversible, and that the reversibility of electrode reactions of lead and cadmium is not good.  相似文献   

2.
《Electroanalysis》2017,29(12):2685-2688
Anodic stripping voltammetry (ASV) is an analysis technique that permits the selective and quantitative analysis of metal ion species in solution. It is most commonly applied in neutral to acidic electrolyte largely due to inherent metal ion solubility. Bismuth (Bi) is a common film used for ASV due to its good sensitivity, overall stability and insensitivity to O2. ASV, utilizing a Bi film, along with cadmium (Cd) and lead (Pb) as the plating mediators, has recently been adapted to determine zinc (Zn) concentrations in highly alkaline environments (30 % NaOH or 35 % M KOH). Successful analysis of Zn in alkaline relies on the ability of the hydroxide to form soluble metal anion species, such as Bi(OH)4 and Zn(OH)42−. Here, we look to extend this technique to detect and quantify copper (Cu) ions in these highly basic electrolytes. However, in general, the use of ASV to detect and quantify Cu ion concentrations is notoriously difficult as the Cu stripping peak potential overlays with that of Bi from the common Bi film electrode. Here, an ASV method for determining Cu concentration in alkaline solutions is developed utilizing Pb as a deposition mediator. As such, it was found that when analyzing Cu solutions in the presence of Pb, the stripping voltammetry curves present separate and defined Cu stripping peaks. Different analyzes were made to find the best stripping voltammetry performance conditions. As such, an accumulation time of 5 minutes, an accumulation potential of≤−1.45 V vs. Hg/HgO, and a concentration of 35 wt% KOH were determined to be the conditions that presented the best ASV results. Utilizing these conditions, calibration curves in the presence of 5.0 ppm Pb showed the best linear stripping signal correlation with an r‐squared value of 0.991 and a limit of detection (LOD) of 0.67 ppm. These results give way to evaluating Cu concentrations using ASV in aqueous alkaline solutions.  相似文献   

3.
A standardless electrochemical method for metal ion determination in aqueous solution is proposed. This method is based on the combination of stripping voltammetry and controlled potential coulometry laws. Its application requires neither calibration using standard solutions nor standard additions to the studying solutions. The efficiency of the new method was examined using the detection of mercury, cadmium, copper and lead ions in aqueous media. The interference of metal ions was studied, and the determination of each metal ion was carried out in the presence of the others. The method was tested on samples of river water analyzed independently by atomic absorption spectrometry. A good agreement of the results was demonstrated.  相似文献   

4.
A simple, rapid, and inexpensive anodic stripping voltammetric method with a mercury thin film electrode is reported for the establishment of baseline concentrations of cadmium, lead, and copper in natural waters. The procedure for routine surface preparation of wax-impregnated graphite mercury film electrodes requires about 30 min. Concentrations in the 0.006–6 μg l-1 range are determined by linear d.c. voltage sweeps; the total time for a plating and stripping cycle is 6 min or less. The need for pressure-digesting samples for copper determinations is demonstrated. The a.s.v. results correlate well with corresponding analyses performed by graphite-furnace atomic absorption spectrometry.  相似文献   

5.
Farias PA  Ferreira SL  Ohara AK  Bastos MB  Goulart MS 《Talanta》1992,39(10):1245-1253
Controlled adsorptive accumulation of copper complexed with TAN, TAC, TAR and TAM (heterocyclic azo-compounds) on a static mercury drop electrode provides the basis for the direct stripping measurement of this element in the nanomolar concentration level. The ligand TAN exhibited great sensitivity and better separation of the peak current of the ligand in relation to the complex. The reduction current of adsorbed complex ions of copper is measured by linear scan cathodic stripping voltammetry, preceded by a period of accumulation of a few minutes. The peak potential is at approximately -0.37 V vs. Ag/AgCl. Optimal experimental parameters were found to be a TAN concentration of 1 x 10(-5)M, an accumulation potential of -0.22 V, and a solution pH of 3.7 (acetate buffer). The detection limit is 0.8nM after a 5-min accumulation with a stirred solution, and the response is linear up to 50 mug/l. Many common cations and anions do not interfere in the determination of copper. The interference of titanium is eliminated by addition of fluoride ion. Results are reported for a fresh water sample.  相似文献   

6.
硒碳糊电极微分电位溶出法测定铜和铋   总被引:1,自引:0,他引:1  
建立了掺杂硒碳糊电极同时测定铜和铋的微分电位溶出法。在HCl(0.05mol/L)中,在-0.3V(vs.Ag/AgCl)下,Cu2+和Bi3+电沉积在电极表面,再在溶液中溶解氧的作用下,铜和铋从电极表面溶出,分别于0.30V和0.02V获得灵敏的电位溶出峰。微分电位溶出峰高(dt/dE)与铜和铋的浓度成线性关系,线性范围为5.0×10-9~1.55×10-7mol/L,检出限分别为4.0×10-9和2.5×10-9mol/L(S/N=3)。方法用于实际样品中铜和铋的测定,结果令人满意。  相似文献   

7.
In the present work, the cathodic stripping voltammetric methodology using a hanging mercury drop electrode was described for simultaneous determination of lead and zinc in different real samples. The method is based on adsorption of metal ions on mercury electrode using carbidopa as a suitable complexing agent. The potential was scanned to the negative direction and the differential pulse stripping voltammograms were recorded. Optimal conditions were found to be: accumulation time; 70 s, accumulation potential; 50 mV versus Ag/AgCl, scan rate; 40 mV s?1, supporting electrolyte; 0.01 M ammonia buffer at pH 8.5, and concentration of carbidopa; 8.0 μM. The relationship between the peak current versus concentration was linear over the range of 0.1–210 and 0.2–170 nM for lead and zinc, respectively. The detection limits are 0.09 and 0.15 nM for lead and zinc ions respectively. The relative standard deviations at a concentration level of 70 nM of both metal ions are found 1.08 and 1.24% for lead and zinc ions respectively.  相似文献   

8.
A novel, sensitive and selective adsorptive stripping procedure for simultaneous determination of copper, bismuth and lead is presented. The method is based on the adsorptive accumulation of thymolphthalexone (TPN) complexes of these elements onto a hanging mercury drop electrode, followed by reduction of adsorbed species by voltammetric scan using differential pulse modulation. The influences of control variables on the sensitivity of the proposed method for the simultaneous determination of copper, lead and bismuth were studied using the Derringer desirability function. The optimum analytical conditions were found to be TPN concentration of 4.0 microM, pH of 9.0, and accumulation potential at -800 mV vs. Ag/AgCl with an accumulation time of 80 s. The peak currents are proportional to the concentration of copper, bismuth and lead over the 0.4-300, 1-200 and 1-100 ng mL(-1) ranges with detection limits of 0.4, 0.8 and 0.7 ng mL(-1), respectively. The procedure was applied to the simultaneous determination of copper, bismuth and lead in the tap water and some synthetic samples with satisfactory results.  相似文献   

9.
The labilities of copper, lead and cadmium complexes with fulvic acid, nitrilotriacetic acid and an iron-humic acid colloid were studied on a preplated thin mercury film electrode and with in-situ plating of mercury on a glassy carbon electrode. In the presence of mercury(II) the apparent labilities based on direct-current anodic stripping voltammetric peak-area measurements increased for each of the cadmium and lead species and for the copper iron-humic acid colloid species. In contrast, for the copper complexes with nitrilotriacetic acid and fulvic acid the lability was not measurably altered by mercury(II); it is inferred that they do not undergo rapid metal exchange with mercury(II).  相似文献   

10.
Repeated cycles of plating and stripping using a mercury-coated graphite electrode in raw sea water show increasing negative errors for copper while lead and cadmium are unaffected. This phenomenon, which is not observed in acidified sea water, is attributed to formation of electroinactive Cu(I) species on the electrode.  相似文献   

11.
Kadara RO  Tothill IE 《Talanta》2005,66(5):1089-1093
As copper(II) is a common ion in a variety of analytical samples, its effect on the stripping response of lead(II) at bismuth film screen-printed carbon electrode (BFSPCE) was investigated. The study was conducted using a screen-printed three-electrode system (working, counter and reference electrodes), with the carbon-working electrode plated in situ with bismuth film. Copper present at significant concentration level in samples was found to affect the sensitivity of the electrode by reducing the constant current stripping chronopotentiometric (CCSCP) response of lead(II). Recovery of the lead stripping response at the BFSPCE in the presence of copper was obtained when 0.1 mM ferricyanide was added to the test solution. The ferricyanide added circumvents the detrimental effect of copper(II) by selectively masking the copper ions by forming a complex. The analytical utility of the procedure is illustrated by the stripping chronopotentiometric determinations of lead(II) in soil extracts.  相似文献   

12.
A stable film of poly(3‐octylthiophene)–dihydroxyanthraquinone sulfonate has been synthesized electrochemically in non‐aqueous solution. The incorporation of dihydroxyanthraquinone sulfonate as an anionic complexing ligand into poly(3‐octylthiophene) film during electropolymerization was achieved and copper ions were accumulated by reduction on the electrode surface. The presence of dihydroxyanthraquinone sulfonate during the electrochemical polymerization of 3‐octylthiophene is shown to impact the sensitivity and the stability of the organic conducting film electrode response. The electroanalysis of copper(II) ions using conducting polymer electrode was achieved by differential pulse anodic stripping voltammetry with remarkable selectivity. The analytical performance was evaluated and linear calibration graphs were obtained in the concentration range of 50–400 ng mL?1 copper(II) ion for 240 seconds accumulation time and the limit of detection was found to be 7.8 ng mL?1. To check the selectivity of the proposed stripping voltammetric method for copper(II) ion, various metal ions as potential interferents were tested. The developed method was applied to copper(II) determination in certified reference material, NWRI‐TMDA‐61, trace elements in fortified water.  相似文献   

13.
Zhang G  Fu C 《Talanta》1991,38(12):1481-1485
A method for the determination of trace amounts of copper with a chemically modified carbon press-formed electrode is described. Copper could be accumulated at the electrode by complexing with benzoin oxime in ammonia buffer, then reduced at a constant potential of −0.4 V (vs. SCE) in nitric acid solution. Finally, a well-defined stripping peak could be obtained by scanning the potential in a positive direction. The response depends on the concentration of copper and accumulation time. For an accumulation time of 5 min the detection limit is about 1 ng/ml and the linear range is from 2 ng/ml to 4000 ng/ml, with a relative standard deviation of 5%. Many common metal ions have little or no effect on the determination of copper. The recommended procedure was applied to the determination of trace amounts of copper in natural water, and the results are in agreement with those of atomic-absorption spectrometry.  相似文献   

14.
The determination of lead, copper and cadmium by anodic stripping voltammetry at a wax-impregnated graphite electrode, pre-plated with mercury, has been investigated. Electrode preparation and cell design are discussed, and the effects of mercury loading and sample pH on electrode sensitivity are described. Detection limits and precision on aqueous samples are reported. Calibration graphs are linear for lead and cadmium, but non-linear for low concentrations of copper. The depression of peak current and shift of peak potential for copper in chloride media are described and an explanation is proposed. Precision and recovery of metal additions are reported for digested samples of whole blood.  相似文献   

15.
将流动注射应用于电位络合滴定分析法,建立了一种可同时测定混合金属离子的电位滴定方法。在该方法中,用EDTA与氟化钠的混合溶液作为滴定剂,在流通池中同时插入汞膜电极和氟离子指示电极,在滴定过程中的任一滴定点,流出液的汞电位和反应物的混合比例可由两个电极的电位测定值同时获得,从而可应用多元校正法由相应的滴定曲线求得混合金属离子中每一种组分的含量。应用该方法对混合样品中的Cu2+、Pb2+、Zn2+进行了同时测定,测定结果的相对标准偏差均在0.14%~0.48%(n=5)之间,回收率均在97.3%~103.9%之间。  相似文献   

16.
A carbon paste electrode modified with 2‐aminothiazole functionalized poly(glycidylmethacrylate‐methylmethacrylate‐divinylbenzene) microspheres was used for trace determination of mercury, copper and lead ions. After the open‐circuit accumulation of the heavy metal ions onto the electrode, the sensitive anodic stripping peaks were obtained by square wave anodic stripping voltammetry (SWASV)). Many parameters such as the composition of the paste, pH, preconcentration time, effective potential scan rate and stirring rate influence the response of the measurement. The procedures were optimized for most sensitive and reliable determinations of the desired species. For a 10‐min preconcentration time in synthetic solutions at optimum instrumental and experimental conditions, the detection limit (LOD) was 12.3, 2.8 and 4.5 μg L?1 for mercury, copper and lead, respectively. The limits of detection may be enhanced by increasing the preconcentration time. For example, LOD of mercury and copper was 4.9 and 1.0 μg L?1 for fifteen minutes preconcentration time. The sensitivity may also considered to be increased by using a more suitable electrode composition targeting the more conductive electrode with lesser amount of modified polymer for sub‐μg L?1 levels of heavy metal ions. The optimized method was successfully applied to the determination of copper in tap water and waste water samples by means of standard addition procedure. The copper content found was comparable with the certified concentration of the waste water sample. The calibration plots for mercury and lead spiked real samples were also drawn.  相似文献   

17.
A new approach to the multivariate sensitivity concept based on the determination of the capability of discrimination of a method of analysis is shown. Thus the analytical sensitivity is defined in this work by the analyte concentration that a analytical method is able to discriminate, which implies the estimation of the ‘false noncompliance’ and ‘false compliance’. In this approach the estimation of the multivariate analytical sensitivity is independent of scale factors and calibration models, and allows one to study the behavior of a analytical method for several concentrations and matrix. The estimation of this parameter in the simultaneous determination of selenium, copper, lead and cadmium by stripping voltammetry when using soft calibration is carried out, showing that different multivariate analytical sensitivities are obtained for each metal.  相似文献   

18.
Trace amounts of thallium(I) can be determined using adsorptive cathodic stripping voltammetry in the presence of Xylenol Orange (XO). The reduction current of the thallium(I)-XO complex ion was measured by square-wave cathodic stripping voltammetry. The peak potential was at -0.44 V vs. Ag/AgCl. The effect of various parameters (pH, ligand concentration, accumulation potential and collection time) on the response are discussed. The response was linearly related to the thallium concentration in the range 0.5-110 ng ml(-1) and 110-2000 ng ml(-1). The limit of detection was 0.2 ng ml(-1). The relative standard deviation for the determination of 80 ng ml(-1) thallium was 2.8%. Many common anions and cations did not interfere with the determination of thallium. The interference of lead was reduced by the addition of 0.003 M sodium carbonate. The voltammetric procedure was then successfully applied to the determination of thallium in various complex samples.  相似文献   

19.
the determination of copper, lead, zinc, cadmium and bismuth in standard sea water samples by multiple scanning anodic stripping has been investigated. The influence of plating potential and sample pH has been studied.  相似文献   

20.
Tanaka S  Yoshida H 《Talanta》1989,36(10):1044-1046
The accumulation behaviour and stripping voltammetry of silver(I) was investigated with a carbon-paste electrode modified with a thiacrown compound. Silver could be accumulated at the electrode in the absence of an applied potential by immersing the electrode in a solution of sodium perchlorate containing silver(I), then reduced at constant potential in 0.1M acetate buffer solution. Finally a well-defined stripping peak could be obtained by scanning the potential in a positive direction. The calibration curve for silver was linear over the range 0.5-2.5 muM with accumulation for 5 min. Studies of the effect of other metal ions showed that the silver was selectively accumulated at the electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号