首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Poly[2-(tert-butoxycarbonyl)-1,4-phenylene] ( 2 ) was prepared by the Ni-catalyzed polymerization of tert-butyl 2,5-dichlorobenzoate ( 1 ). The microstructure of polymer 2 was probably alternating head-to-head and tail-to-tail. This polymer was soluble in dipolar aprotic solvents, chloroform, tetrahydrofuran, and dichloromethane. Polymer 2 was saponified easily by thermal or acid treatment to yield poly[2-carboxy-1,4-phenylene] ( 3 ). Decarboxylation of polymer 3 in quinoline in the presence of copper(II) oxide produced poly(p-phenylene) (PPP) ( 4 ).  相似文献   

2.
Transient techniques in NMR of 1H and 13C were used to study the chemical and physical structures of solid poly(p-phenylene) (PPP), poly(2,6-dimethyl-p-phenylene oxide) (PDMPO), poly(p-phenylene sulfide) (PPS), poly(p-biphenylene sulfide) (PPBS), poly(p-phenylene selenide) (PPSe), poly(p-biphenylene selenide) (PPBSe), poly(2,5-thienylene) (PT), poly(3-methyl-2,5-thienylene) (PMT), and poly(p-phenylene-co-2,5-thienlyene) (PPPT) of different monomer ratios. 13C NMR confirmed the expected chemical structure for homopolymers, and indicated a random distribution of monomer units in PPPT. Relative fractions of crystalline and interfacial regions were determined by measurements of 1H magnetic relaxation, 13C CP/MAS NMR, and XRD. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
This paper describes the synthesis and characterization of polystyrene-block-poly(2,2'-dimethyl-4,4'-biphenylene phenylterephthalate)-block-polystyrene and of poly(ethylene glycol)-black-poly(2,2'-dimethyl-4,4'-biphenylene phenylterephthalate)-block-poly (ethylene glycol) block copolymers. The ABA-triblock copolymers were synthesized by condensation reaction of telechelic poly(2,2'-dimethyl-4,4'-biphenylene phenylterephthalate) with ω-hydroxy polystyrene and ω-hydroxy poly(ethylene glycol) methyl ether of different molecular weights prepared by anionic polymerization. Some aspects of the liquid crystalline behavior and the phase transitions with respect to the block copolymer composition will be discussed.  相似文献   

4.
The syntheses of five polyaromatic pyrazine polymers are described. These polymers were synthesized by the condensation of bis-α-haloaromatic ketones with ammonia in N,N-dimethylacetamide (DMAc) solvent in the presence of air or peroxides. The condensation of bis-p-(α-bromoacetyl)benzene (IIIa), bis-p,p′-(α-chloroacetyl)biphenyl (IIIb) bis-p,p′-(α-chloroacetyl)diphenyl ether (IIIc), bis-p,p′-(α-chloroacetyl)diphenylmethane (IIId), and α,α′-dibenzoyl-α,α′-dibromo-p-xylene (V) under these reaction conditions gave poly[2,5-(1,4-phenylene)pyrazine] (IVa), poly[2,5-(4,4′-biphenylene)-pyrazine] (IVb), poly[2,5-(4,4′-oxydiphenylene)pyrazine] (IVc), poly[2,5-(4,4′-methylenediphenylene)pyrazine] (IVd), and poly[2,5-(1,4-phenylene)-3,6-diphenylpyrazine] (VI), respectively. Thermogravimetric analysis (TGA) of these polymers showed them to be thermally stable up to the temperature range of 450–550°C in air for short periods of time. The inherent viscosities of these polymers ranged from 0.18 to 1.30.  相似文献   

5.
The effects of incorporating a p-phenylene- (or m-phenylene)-1,3,4-oxadiazole fragment into the backbone of poly[1,4-phenylene(diphenylsilyl)-1,4-phenylene-2,5-(1,3,4-oxadiazole)], which was developed by the authors, was investigated. Bis[(p-carbohydrazidophenyl)]diphenylsilane was copolymerized with dipentachlorophenyl terephthalate or isophthalate to produce the prepolymers poly[N-(p-diphenylsilylbenzoyl)-NN″-(terephthaloyl)-N″′-(p-benzoyl)dihydrazide] and poly[N-(p-diphenylsilylbenzoyl)-N′,-N″-(isophthaloyl)-N″′-p-(benzoyl) dihydrazide], respectively. The polyhydrazides were converted by thermal dehydration into poly[1,4-phenylene(diphenylsilyl)-1,4-phenylene-(1,3,4-oxadiazole-2,5-diyl)-1,4-phenylene-2,5-(1,3,4-oxadiazole)] and poly[1,4-phenyl-ene(diphenylsilyl)-1,4-phenylene-(1,3,4-oxadiazole-2,5-diyl)-1,3,4-(oxadiazole)]. The new polymers were soluble in organic solvents. Films cast from these solutions exhibited good adhesion to glass and metal surfaces. Thermal analysis showed that the heat stability of all these polymers was about the same and that they were resistant to decomposition when heated in air to about 400°C. The results also indicated that these polymers were somewhat less heat-resistant than samples of poly-[1,4-phenylene(diphenylsilyl)-1,4-phenylene-2,5-]1,3,4-(oxadiazole) synthesized from bis(p-carbohydrazidophenyl)diphenylsilane and bis-(p-carbopentachlorophenoxy-phenyl)diphenylsilane.  相似文献   

6.
Photocrosslinkable poly(vinylbenzophenone)‐containing polymers were synthesized via a one‐step, Friedel–Crafts benzoylation of polystyrene‐containing starting materials [including polystyrene, polystyrene‐block‐poly(tert‐butyl acrylate), polystyrene‐block‐poly(ethylene oxide), polystyrene‐block‐poly(methyl methacrylate), and polystyrene‐block‐poly(n‐butyl acrylate)] with benzoyl trifluoromethanesulfonate as a benzoylation reagent. The use of this mild reagent (which required no added Lewis acid) permitted polymers with well‐defined compositions and narrow molecular weight distributions to be synthesized. Micelles formed from one of these benzoylated polymers, [polystyrene0.25co‐poly(vinylbenzophenone)0.75]115block‐poly(acrylic acid)14, were then fixed by the irradiation of the micelle cores with UV light. As the irradiation time was increased, the pendent benzophenone groups crosslinked with other chains in the glassy micelle cores. Dynamic light scattering, spectrofluorimetry, and Fourier transform infrared spectroscopy were all used to verify the progress of the crosslinking reaction. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2604–2614, 2006  相似文献   

7.
We report a simple procedure to prepare a novel Au‐micelle composite with a core‐shell‐corona structure. This composite is prepared by reduction of tetrachloroauric acid (HAuCl4 · 3H2O) in dilute aqueous solution containing polystyrene‐block‐poly(4‐vinylpyridine) micelles and poly(ethylene oxide)‐block‐poly(4‐vinylpyridine) copolymers. The micelles with a polystyrene core and a poly(4‐vinylpyridine) shell are transformed into Au‐micelle composites with a polystyrene core, a swollen hybrid Au/poly(4‐vinylpyridine) inner shell, and a poly(ethylene oxide) corona by direct physisorption of gold particles with poly(4‐vinylpyridine) chains.

  相似文献   


8.
A novel and convenient synthetic method for the preparation of α,ω-bis(2,6-dimethylphenol)–poly(2,6-dimethyl-1,4-phenylene oxide) (PPO-2OH) is presented. It is based on the oxidative copolymerization of 2,6-dimethylphenol (DMP) with 2,2′-di(4-hydroxy-3,5-dimethylphenyl propane) (TMBPA) in a mixture of water–methanol or chlorobenzene–methanol. By using a 4/1 mole ratio of DMP to TMBPA and different solvent mixtures, it was possible to obtain bifunctional PPO-2OHs with number average molecular weights between 1000 and 5000. A phase-transfer-catalyzed etherification of PPO-2OH chain ends with a mixture of m- and p-chloromethylstyrene was used to synthesize α,ω-bis(vinylbenzyl)-poly(2,6-dimethyl-1,4-phenylene oxide)s (PPO-2VBs). The thermal polymerization of the PPO-2VBs was studied by differential scanning calorimetry, and has demonstrated a very high thermal reactivity for this new class of reactive oligomers.  相似文献   

9.
Summary: Spherical micelles have been formed by mixing, in DMF, a poly(styrene)‐block‐poly(2‐vinylpyridine)‐block‐poly(ethylene oxide) (PS‐block‐P2VP‐block‐PEO) triblock copolymer with either poly(acrylic acid) (PAA) or a tapered triblock copolymer consisting of a PAA central block and PEO macromonomer‐based outer blocks. Noncovalent interactions between PAA and P2VP result in the micellar core while the outer corona contains both PS and PEO chains. Segregation of the coronal chains is observed when the tapered copolymer is used.

Inclusion of comb‐like chains with short PEO teeth in the corona triggers the nanophase segregation of PS and PEO as illustrated here (PS = polystyrene; PEO = poly(ethylene oxide)).  相似文献   


10.
A series of novel side‐chain liquid crystalline ABC triblock copolymers composed of poly(ethylene oxide) (PEO), polystyrene (PS), and poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] (PMMAZO) were synthesized by atom transfer radical polymerization (ATRP) using CuBr/1,1,4,7,7‐pentamethyldiethylenetriamine (PMDETA) as a catalyst system. First, the bromine‐terminated diblock copolymer poly(ethylene oxide)‐block‐polystyrene (PEO‐PS‐Br) was prepared by the ATRP of styrene initiated with the macro‐initiator PEO‐Br, which was obtained from the esterification of PEO and 2‐bromo‐2‐methylpropionyl bromide. An azobenzene‐containing block of PMMAZO with different molecular weights was then introduced into the diblock copolymer by a second ATRP to synthesize the novel side‐chain liquid crystalline ABC triblock copolymer poly(ethylene oxide)‐block‐polystyrene‐block‐poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] (PEO‐PS‐PMMAZO). These block copolymers were characterized using proton nuclear magnetic resonance (1H NMR) and gel permeation chromatograph (GPC). Their thermotropic phase behaviors were investigated using differential scanning calorimetry (DSC) and polarized optical microscope (POM). These triblock copolymers exhibited a smectic phase and a nematic phase over a relatively wide temperature range. At the same time, the photoresponsive properties of these triblock copolymers in chloroform solution were preliminarily studied. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4442–4450, 2008  相似文献   

11.
The ring-opening polymerization (ROP) of the cyclic ester amide (cEA) 5 (systematic name, 1-oxa-8-aza-cyclotetradecane-9,14-dione) - prepared from adipic anhydride and 1-amino-6-hexanol - in the melt at 165 °C and in solution at 100 °C and 120 °C with Bu2Sn(OMe)2 or Ti(OBu)4 as initiator yields the alternating poly(ester amide) (PEA) 4 (systematic name, poly(5-(6-oxyhexylcarbamoyl)-pentanoate) with regular microstructure. Kinetic studies for different monomer-to-initiator ratios, different reaction media, initiators and temperatures reveal that the ROP is a first-order reaction with respect to the monomer. Under suitable polymerization conditions termination and transfer reactions are suppressed. The elementary chain growth reaction proceeds by a coordination insertion mechanism in analogy to the polymerization of lactones. By using monohydroxy- and bishydroxy-functional telechelic poly(ethylene oxide) and Sn(octoate)2 as the initiating system poly(ethylene oxide)-block-poly(ester amide)s and poly(ester amide)-block-poly(ethylene oxide)-block-poly(ester amide)s are obtained. The poly(ester amide) 4 is a semicrystalline material with a melting point of 140 °C, the block copolymers are phase separated systems showing two melting points characteristic for the respective homopolymers.  相似文献   

12.
The synthesis of the poly(para-phenyleneethynylene)-block-poly(ethylene oxide) block copolymer (PPE-b-PEO) ( 1 ) via condensation of endfunctionalized poly(para-phenyleneethynylene) (PPE) ( 5 ) and poly(ethylene oxide) monomethyl ether (PEO) is reported. This is achieved by the initial synthesis of a PPE homopolymer with quantitative terminal functionalization, as proven by 1H NMR and field desorption mass spectrometry (FD-MS). Reaction of the latter with PEO affords the block copolymer 1 , which was characterized by 1H NMR spectroscopy, FD-MS and gel permeation chromatography (GPC). Furthermore it is shown that matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) is a suitable method to investigate PPE-b-PEO with respect to molecular weights and copolymer composition.  相似文献   

13.
The amphiphilic cyclic poly(ethylene oxide)‐block‐polystyrene [c‐(PEO‐b‐PS)] was synthesized by cyclization of propargyl‐telechelic poly(ethylene oxide)‐block‐polystyrene‐block‐poly(ethylene oxide) (?? PEO‐b‐PS‐b‐PEO? ?) via the Glaser coupling. The hydroxyl‐telechelic ABA triblock PEO‐b‐PS‐b‐PEO was first prepared by successive living anionic polymerization of styrene and ring‐opening polymerization of ethylene oxide, and then the hydroxyl ends were reacted with propargyl bromide to obtain linear precursors with propargyl terminals. Finally, the intramolecular cyclization was conducted in pyridine under high dilution by Glaser coupling of propargyl ends in the presence of CuBr under ambient temperature, and the c‐(PEO‐b‐PS) was directly obtained by precipitation in petroleum ether with high efficiency. The cyclic products and their corresponding linear precursor ?? PEO‐b‐PS‐b‐PEO? ? were characterized by means of GPC, 1H NMR, and FTIR. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
Summary: A novel ABC triblock copolymer with a rigid‐rod block was synthesized by atom transfer radical polymerization (ATRP). First, a poly(ethylene oxide) (PEO)‐Br macroinitiator was synthesized by esterification of PEO with 2‐bromoisobutyryl bromide, which was subsequently used in the preparation of a poly(ethylene oxide)‐block‐poly(methyl methacrylate) (PEO‐b‐PMMA) diblock copolymer by ATRP. A poly(ethylene oxide)‐block‐poly(methyl methacrylate)‐block‐poly{2,5‐bis[(4‐methoxyphenyl)oxycarbonyl]styrene} (PEO‐b‐PMMA‐b‐PMPCS) triblock copolymer was then synthesized by ATRP using PEO‐b‐PMMA as a macroinitiator.

ABC triblock copolymer with a rigid‐rod block.  相似文献   


15.
The blend membranes of polystyrene-block-polyisoprene-block-polystyrene and polyethylene-block-poly(ethylene glycol)-block-polycaprolactone were designed using the phase inversion technique. The poly(methyl methacrylate)-coated gold nanoparticles are around 40–50 nm in size. The honeycomb-shaped nanopores were uniformly dispersed in polystyrene-block-polyisoprene-block-polystyrene/polyethylene-block-poly(ethylene glycol)-block-polycaprolactone/poly(methyl methacrylate)-coated gold nanoparticles blend membranes. There was a 16% increase in tensile strength and a 33% increase in tensile modulus of polystyrene-block-polyisoprene-block-polystyrene/polyethylene-block-poly(ethylene glycol)-block-polycaprolactone/poly(methyl methacrylate)-coated gold nanoparticles 1 relative to the neat membrane. With 1 wt% nanoparticles, the membrane showed a higher water flux of 59.2 mL cm?2 min?1 and a salt rejection ratio of 25.4%, while the polystyrene-block-polyisoprene-block-polystyrene/polyethylene-block-poly(ethylene glycol)-block-polycaprolactone membrane without poly(methyl methacrylate)-coated gold nanoparticles had lower flux (43.8 mL cm?2 min?1) and salt rejection (18.5%).  相似文献   

16.
Aromatic polyelectrolytes based on sulfonated poly(benzobisthiazoles) (PBTs) have been synthesized by a polycondensation reaction of sulfo-containing aromatic dicarboxylic acids with 2,5-diamino-1,4-benzenedithiol dihydrochloride (DABDT) in freshly prepared polyphosphoric acid (PPA). Several sulfonated PBTs, poly[(benzo[1,2-d:4,5-d′]bisthiazole-2,6-diyl)-2-sulfo-1,4-phenylene] sodium salt (p-sulfo PBT), poly[(benzo[1,2-d:4,5-d′]bisthiazole-2,6-diyl)-5-sulfo-1,3-phenylene] sodium salt (m-sulfo PBT), their copolymers, and poly[(benzo[1,2-d:4,5-d′]bisthiazole-2,6-diyl)-4,6-disulfo-1,3-phenylene] potassium salt (m-disulfo PBT), have been targeted and the polymers obtained characterized by 13C-NMR, FT-IR, elemental analysis, thermal analysis, and solution viscosity measurements. Structural analyses confirm the structures of p-sulfo PBT and m-disulfo PBT, but suggest that the sulfonate is cleaved from the chain during synthesis of m-sulfo PBT. m-Disulfo PBT dissolves in water as well as strong acids, while p-sulfo PBT dissolves well in strong acids, certain solvent mixtures containing strong acids, and hot DMSO. TGA indicates that these sulfonated PBTs are thermally stable to over 500°C. Free-standing films of p-sulfo PBT, cast from dilute neutral DMSO solutions, are transparent, tough, and orange in color. Films cast from basic DMSO are also free standing, while being opaque and yellow-green. p-Sulfo PBT was incorporated as the dopant ion in polypyrrole, producing conductive films with conductivities as high as 3 S/cm and electrical anisotropies as high as 10. © 1996 John Wiley & Sons, Inc.  相似文献   

17.
The bulk morphology of poly(1,4‐butadiene)–block–polystyrene–block–poly (ethylene oxide) (PB‐b‐PS‐b‐PEO) and polyethylene–block–polystyrene–block–poly (ethylene oxide) (PE‐b‐PS‐b‐PEO) triblock terpolymers is analyzed under a thermal protocol. This allows the investigation of the morphology during the occurrence of thermal transitions, such as crystallization and melting, which is a neat way of studying the competition between microphase separation and crystallization for the morphology formation. Only one of the studied systems presented a morphological transition upon melting of the PEO and the PE blocks, attributed to the crystallization of the PE block in finite interconnected domains. All the other systems presented no morphological transitions during the thermal scan. The results prove that the crystallization only disrupt the microphases generated in the molten state under very specific circumstances for these block copolymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3197–3206, 2007  相似文献   

18.
Novel amphiphilic fluorinated ABC‐type triblock copolymers composed of hydrophilic poly(ethylene oxide) monomethyl ether (MeOPEO), hydrophobic polystyrene (PSt), and hydrophobic/lipophobic poly(perfluorohexylethyl acrylate) (PFHEA) were synthesized by atom transfer radical polymerization (ATRP) using N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA)/CuBr as a catalyst system. The bromide‐terminated diblock copolymers poly(ethylene oxide)‐block‐polystyrene (MeOPEO‐b‐PSt‐Br) were prepared by the ATRP of styrene initiated with the macroinitiator MeOPEO‐Br, which was obtained by the esterification of poly(ethylene oxide) monomethyl ether (MeOPEO) with 2‐bromoisobutyryl bromide. A fluorinated block of poly(perfluorohexylethyl acrylate) (PFHEA) was then introduced into the diblock copolymer by a second ATRP process to synthesize a novel ABC‐type triblock copolymer, poly(ethylene oxide)‐block‐polystyrene‐block‐poly(perfluorohexylethyl acrylate) (MeOPEO‐b‐PSt‐b‐PFHEA). These block copolymers were characterized by means of proton nuclear magnetic resonance (1H NMR) and gel permeation chromatography (GPC). Water contact angle measurements revealed that the polymeric coating of the triblock copolymer (MeOPEO‐b‐PSt‐b‐PFHEA) shows more hydrophobic than that of the corresponding diblock copolymer (MeOPEO‐b‐PSt). Bovine serum albumin (BSA) was used as a model protein to evaluate the protein adsorption property and the triblock copolymer coating posseses excellent protein‐resistant character prior to the corresponding diblock copolymer and polydimethylsiloxane. These amphiphilic fluoropolymers can expect to have potential applications for antifouling coatings and antifouling membranes. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
A series of novel ABC2-type liquid-crystalline block copolymers with azobenzene moieties in the side chains were prepared by combination of atom transfer radical polymerization (ATRP) and the chemical modification reaction. First, the bromine-terminated diblock copolymer poly(ethylene oxide) monomethyl ether-block-polystyrene (MPEO-PS-Br) was prepared by ATRP of styrene initiated with macroinitiator MPEO-Br, which was obtained from the esterification of MPEO and 2-bromoisobutyryl bromide. Then, the bromo end groups of the resulting MPEO-PS-Br were derivatized into twice as many bromoisobutyrates by the chain end modification reaction to obtain ω,ω′-bis(bromo)-PS-MPEO (MPEO-PS-Br2). The azobenzene-containing blocks of poly[6-(4-methoxy-azobenzene-4′-oxy) hexyl methacrylate] (PMMAZO) with different molecular weights were introduced into the derivative diblock copolymer by a second ATRP to synthesize the novel ABC2-type liquid-crystalline block copolymers poly(ethylene oxide) monomethyl ether-block-polystyrene-block-{poly[6-(4-methoxy-azobenzene-4′-oxy) hexyl methacrylate]}2 [MPEO-PS-(PMMAZO)2].  相似文献   

20.
This work reports for the first time a simple and effective approach to trigger a spheres‐to‐ vesicles morphological transition from amphiphilic block copolymer/polyelectrolyte complexes in aqueous solution. Vesicles and large compound vesicles (LCVs) were prepared via complexation of polystyrene‐block‐poly(ethylene oxide) (PS‐b‐PEO) with poly(acrylic acid) (PAA) in water and directly visualized using cryo‐TEM. The complexation and morphological transitions were driven by the hydrogen bonding between the complementary binding sites on the PAA and PEO blocks of the block copolymer. The findings in this work suggest that complexation between amphiphilic block copolymer and polyelectrolyte is a viable approach to vesicles and LCVs in aqueous media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号