首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
《Mathematical Modelling》1982,3(5):391-405
This paper presents a conceptual and mathematical model of the process of satisficing decision making under multiple objectives in which the information about decision maker's preferences is expressed in the form of aspiration levels. The mathematical concept of a value (utility) function is modified to describe satisficing behavior; the modified value function (achievement scalarizing function) should possess the properties of order preservation and order approximation. It is shown that the mathematical basis formed using aspiration levels and achievement scalarizing functions can be used not only for satisficing decision making but also for Pareto optimization, and thus provides an alternative to approaches based on weighting coefficients or typical value functions. This mathematical basis, which can also be regarded as a generalization of the goal programming approach in multiobjective optimization, suggests pragmatic approaches to many problems in multiobjective analysis.  相似文献   

2.
We propose an interactive approach for multiple objective integer linear programming (MOILP) problems that combines the use of the Tchebycheff metric with cutting plane techniques. At each interaction, the method computes the nondominated solution for the MOILP problem that is closest to a reference point according to the Tchebycheff metric. The information provided by the decision maker in each dialogue phase is used to adjust the next reference point through a sensitivity analysis stage. Cutting plane techniques enable the method to take advantage of computations performed at previous iterations to solve the next scalarizing integer program. We address both theoretical issues and the computational implementation.  相似文献   

3.
Multicriteria shortest path problems have not been treated intensively in the specialized literature, despite their potential applications. In fact, a single objective function may not be sufficient to characterize a practical problem completely. For instance, in a road network several parameters (as time, cost, distance, etc.) can be assigned to each arc. Clearly, the shortest path may be too expensive to be used. Nevertheless the decision-maker must be able to choose some solution, possibly not the best for all the criteria.In this paper we present two algorithms for this problem. One of them is an immediate generalization of the multiple labelling scheme algorithm of Hansen for the bicriteria case. Based on this algorithm, it is proved that any pair of nondominated paths can be connected by nondominated paths. This result is the support of an algorithm that can be viewed as a variant of the simplex method used in continuous linear multiobjective programming. A small example is presented for both algorithms.  相似文献   

4.
The success of the reference point scheme within interactive techniques for multiobjective programming problems is unquestionable. However, so far, the different achievement scalarizing functions are, more or less, extensions of the Tchebychev distance. The reason for this is the ability of this function to determine efficient solutions and to support every efficient solution of the problem. For the same reasons, no additive scheme has yet been used in reference point-based interactive methods. In this paper, an additive achievement scalarizing function is proposed. Theoretical results prove that this function supports every efficient solution, and conditions are given under which the efficiency of each solution is guaranteed. Some examples and computational tests show the different behaviours of the Tchebychev and additive approaches, and an additive reference point interactive algorithm is proposed.  相似文献   

5.
Most interactive methods developed for solving multiobjective optimization problems sequentially generate Pareto optimal or nondominated vectors and the decision maker must always allow impairment in at least one objective function to get a new solution. The NAUTILUS method proposed is based on the assumptions that past experiences affect decision makers’ hopes and that people do not react symmetrically to gains and losses. Therefore, some decision makers may prefer to start from the worst possible objective values and to improve every objective step by step according to their preferences. In NAUTILUS, starting from the nadir point, a solution is obtained at each iteration which dominates the previous one. Although only the last solution will be Pareto optimal, the decision maker never looses sight of the Pareto optimal set, and the search is oriented so that (s)he progressively focusses on the preferred part of the Pareto optimal set. Each new solution is obtained by minimizing an achievement scalarizing function including preferences about desired improvements in objective function values. NAUTILUS is specially suitable for avoiding undesired anchoring effects, for example in negotiation support problems, or just as a means of finding an initial Pareto optimal solution for any interactive procedure. An illustrative example demonstrates how this new method iterates.  相似文献   

6.
The main purpose of this paper is to study saddle points of the vector Lagrangian function associated with a multiple objective linear programming problem. We introduce three concepts of saddle points and establish their characterizations by solving suitable systems of equalities and inequalities. We deduce dual programs and prove a relationship between saddle points and dual solutions, which enables us to obtain an explicit expression of the scalarizing set of a given saddle point in terms of normal vectors to the value set of the problem. Finally, we present an algorithm to compute saddle points associated with non-degenerate vertices and the corresponding scalarizing sets.  相似文献   

7.
The Reference Point Method (RPM) is a very convenient technique for interactive analysis of the multiple criteria optimization problems. The interactive analysis is navigated with the commonly accepted control parameters expressing reference levels for the individual objective functions. The partial achievement functions quantify the DM satisfaction from the individual outcomes with respect to the given reference levels, while the final scalarizing achievement function is built as the augmented max–min aggregation of the partial achievements. In order to avoid inconsistencies caused by the regularization, the max–min solution may be regularized by the Ordered Weighted Averages (OWA) with monotonic weights which combines all the partial achievements allocating the largest weight to the worst achievement, the second largest weight to the second worst achievement, and so on. Further, following the concept of the Weighted OWA (WOWA), the importance weighting of several achievements may be incorporated into the RPM. Such a WOWA RPM approach uses importance weights to affect achievement importance by rescaling accordingly its measure within the distribution of achievements rather than by straightforward rescaling of achievement values. The recent progress in optimization methods for ordered averages allows one to implement the WOWA RPM quite effectively as extension of the original constraints and criteria with simple linear inequalities. There is shown that the OWA and WOWA RPM models meet the crucial requirements with respect to the efficiency of generated solutions as well as the controllability of interactive analysis by the reference levels.  相似文献   

8.
Recent studies on the kernel function-based primal-dual interior-point algorithms indicate that a kernel function not only represents a measure of the distance between the iteration and the central path, but also plays a critical role in improving the computational complexity of an interior-point algorithm. In this paper, we propose a new class of parameterized kernel functions for the development of primal-dual interior-point algorithms for solving linear programming problems. The properties of the proposed kernel functions and corresponding parameters are investigated. The results lead to a complexity bounds of ${O\left(\sqrt{n}\,{\rm log}\,n\,{\rm log}\,\frac{n}{\epsilon}\right)}$ for the large-update primal-dual interior point methods. To the best of our knowledge, this is the best known bound achieved.  相似文献   

9.
An Interior-Point Algorithm for Nonconvex Nonlinear Programming   总被引:11,自引:0,他引:11  
The paper describes an interior-point algorithm for nonconvex nonlinear programming which is a direct extension of interior-point methods for linear and quadratic programming. Major modifications include a merit function and an altered search direction to ensure that a descent direction for the merit function is obtained. Preliminary numerical testing indicates that the method is robust. Further, numerical comparisons with MINOS and LANCELOT show that the method is efficient, and has the promise of greatly reducing solution times on at least some classes of models.  相似文献   

10.
In this paper we develop the Complex method; an algorithm for solving linear programming (LP) problems with interior search directions. The Complex Interior-Boundary method (as the name suggests) moves in the interior of the feasible region from one boundary point to another of the feasible region bypassing several extreme points at a time. These directions of movement are guaranteed to improve the objective function. As a result, the Complex method aims to reach the optimal point faster than the Simplex method on large LP programs. The method also extends to nonlinear programming (NLP) with linear constraints as compared to the generalized-reduced gradient.The Complex method is based on a pivoting operation which is computationally efficient operation compared to some interior-point methods. In addition, our algorithm offers more flexibility in choosing the search direction than other pivoting methods (such as reduced gradient methods). The interior direction of movement aims at reducing the number of iterations and running time to obtain the optimal solution of the LP problem compared to the Simplex method. Furthermore, this method is advantageous to Simplex and other convex programs in regard to starting at a Basic Feasible Solution (BFS); i.e. the method has the ability to start at any given feasible solution.Preliminary testing shows that the reduction in the computational effort is promising compared to the Simplex method.  相似文献   

11.
The multi-choice goal programming allows the decision maker to set multi-choice aspiration levels for each goal to avoid underestimation of the decision. In this paper, we propose an alternative multi-choice goal programming formulation based on the conic scalarizing function with three contributions: (1) the alternative formulation allows the decision maker to set multi-choice aspiration levels for each goal to obtain an efficient solution in the global region, (2) the proposed formulation reduces auxiliary constraints and additional variables, and (3) the proposed model guarantees to obtain a properly efficient (in the sense of Benson) point. Finally, to demonstrate the usefulness of the proposed formulation, illustrative examples and test problems are included.  相似文献   

12.
The paper reviews some recent advances in interior-point methods for linear programming and indicates directions in which future progress can be made. Most of the interior-point methods belong to any of three categories: affine-scaling methods, potential reduction methods and central path methods. These methods are discussed together with infeasible interior methods and homogeneous self-dual methods for linear programming. Also discussed are some theoretical issues in interior-point methods like dependence of complexity bounds on some non-traditional measures different from the input length L of the problem. Finally, the paper concludes with remarks on the comparison of interior-point methods with the simplex method based on their performance on NITLIB suite, a standard collection of test problems.  相似文献   

13.
This paper describes the use of preemptive priority based fuzzy goal programming method to fuzzy multiobjective fractional decision making problems under the framework of multistage dynamic programming. In the proposed approach, the membership functions for the defined objective goals with fuzzy aspiration levels are determined first without linearizing the fractional objectives which may have linear or nonlinear forms. Then the problem is solved recursively for achievement of the highest membership value (unity) by using priority based goal programming methodology at each decision stages and thereby identifying the optimal decision in the present decision making arena. A numerical example is solved to represent potentiality of the proposed approach.  相似文献   

14.
In previous work, Costa and Alves (J Math Sci 161:(6)820–831, 2009; 2011) have presented Branch & Bound and Branch & Cut techniques that allow for the effective computation of nondominated solutions, associated with reference points, of multi-objective linear fractional programming (MOLFP) problems of medium dimensions (ten objective functions, hundreds of variables and constraints). In this paper we present some results that enhance those computations. Firstly, it is proved that the use of a special kind of achievement scalarizing function guarantees that the computation error does not depend on the dimension of the problem. Secondly, a new cut for the Branch & Cut technique is presented. The proof that this new cut is better than the one in Costa and Alves (2011) is presented, guaranteeing that it reduces the region to explore. Some computational tests to assess the impact of the new cut on the performance of the Branch & Cut technique are presented.  相似文献   

15.
The simplified Newton method, at the expense of fast convergence, reduces the work required by Newton method by reusing the initial Jacobian matrix. The composite Newton method attempts to balance the trade-off between expense and fast convergence by composing one Newton step with one simplified Newton step. Recently, Mehrotra suggested a predictor-corrector variant of primal-dual interior point method for linear programming. It is currently the interior-point method of the choice for linear programming. In this work we propose a predictor-corrector interior-point algorithm for convex quadratic programming. It is proved that the algorithm is equivalent to a level-1 perturbed composite Newton method. Computations in the algorithm do not require that the initial primal and dual points be feasible. Numerical experiments are made.  相似文献   

16.
In this paper, we focus on a treatment of a linear programming problem with an interval objective function. From the viewpoint of the achievement rate, a new solution concept, the maximin achievement rate solution, is proposed. Nice properties of this solution are shown: a maximin achievement rate solution is necessarily optimal when a necessarily optimal solution exists, and if not, then it is still a possibly optimal solution. An algorithm for a maximin achievement rate solution is proposed based on a relaxation procedure together with a simplex method. A numerical example is given to demonstrate the proposed solution algorithm.  相似文献   

17.
《Optimization》2012,61(3):225-233
The literature in the field of interior point methods for linear programming has been almost exclusively algorithm oriented. Recently Güler, Roos, Terlaky and Vial presented a complete duality theory for linear programming based on the interior point approach. In this paper we present a more simple approach which is based on an embedding of the primal problem and its dual into a skew symmetric self-dual problem. This embedding is essentially due Ye, Todd and Mizuno

First we consider a skew symmetric self-dual linear program. We show that the strong duality theorem trivally holds in this case. Then, using the logarithmic barrier problem and the central path, the existence of a strictly complementary optimal solution is proved. Using the embedding just described, we easily obtain the strong duality theorem and the existence of strictly complementary optimal solutions for general linear programming problems  相似文献   

18.
In this paper, the Iri-Imai algorithm for solving linear and convex quadratic programming is extended to solve some other smooth convex programming problems. The globally linear convergence rate of this extended algorithm is proved, under the condition that the objective and constraint functions satisfy a certain type of convexity, called the harmonic convexity in this paper. A characterization of this convexity condition is given. The same convexity condition was used by Mehrotra and Sun to prove the convergence of a path-following algorithm.The Iri-Imai algorithm is a natural generalization of the original Newton algorithm to constrained convex programming. Other known convergent interior-point algorithms for smooth convex programming are mainly based on the path-following approach.  相似文献   

19.
We specify a variation of the weighting method for multi-criterion optimization which determines nondominated solutions to the bi-criterion integer programming problem. The technique makes use of imposed constraints based on nondominated points. For the bi-criterion case, we develop an algorithm which finds all nondominated points by solving a sequence of single-criterion integer programming problems. We present computational results for the linear 0–1 case and discuss the extension of our algorithm to the general multi-criterion integer programming problem.  相似文献   

20.
A QMR-based interior-point algorithm for solving linear programs   总被引:5,自引:0,他引:5  
A new approach for the implementation of interior-point methods for solving linear programs is proposed. Its main feature is the iterative solution of the symmetric, but highly indefinite 2×2-block systems of linear equations that arise within the interior-point algorithm. These linear systems are solved by a symmetric variant of the quasi-minimal residual (QMR) algorithm, which is an iterative solver for general linear systems. The symmetric QMR algorithm can be combined with indefinite preconditioners, which is crucial for the efficient solution of highly indefinite linear systems, yet it still fully exploits the symmetry of the linear systems to be solved. To support the use of the symmetric QMR iteration, a novel stable reduction of the original unsymmetric 3×3-block systems to symmetric 2×2-block systems is introduced, and a measure for a low relative accuracy for the solution of these linear systems within the interior-point algorithm is proposed. Some indefinite preconditioners are discussed. Finally, we report results of a few preliminary numerical experiments to illustrate the features of the new approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号