首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between polymer molecular structure of the skin layers of crosslinked polyamide composite reverse osmosis (RO) membranes and their RO performances was studied. The molecular structures of these RO membrne skin layers was designed using a computer calculation method. It was found that the molecular structures of crosslinked polyamides exhibiting good RO performances possessed relatively flat and uniform network structures.  相似文献   

2.
新型聚酰亚胺-氨酯反渗透复合膜的结构与性能   总被引:1,自引:0,他引:1  
通过界面聚合方法, 将功能单体N,N′-二甲基间苯二胺(DMMPD)与多元酰氯5-氯甲酰氧基-异肽酰氯(CFIC)聚合, 制得一种耐氧化的聚酰亚胺-氨酯反渗透复合膜. 采用全反射傅里叶变换红外光谱(ATR-FTIR)和X射线光电子能谱(XPS)分析了膜活性层的化学结构, 考察了膜的耐氧化性能, 并探讨了膜活性层化学结构与膜抗氧化性能之间的关系.  相似文献   

3.
4.
Laboratory-scale colloidal fouling tests, comparing the fouling behavior of cellulose acetate and aromatic polyamide thin-film composite reverse osmosis (RO) membranes, are reported. Fouling of both membranes was studied at identical initial permeation rates so that the effect of the transverse hydrodynamic force (permeation drag) on the fouling of both membranes is comparable. Results showed a significantly higher fouling rate for the thin-film composite membranes compared to that for the cellulose acetate membranes. Addition of an anionic surfactant (sodium dodecyl sulfate, SDS) to mask variations in chemical and electrokinetic surface characteristics of the cellulose acetate and aromatic polyamide membranes resulted in only a small change in the fouling behavior. The higher fouling rate for the thin-film composite membranes is attributed to surface roughness which is inherent in interfacially polymerized aromatic polyamide composite membranes. AFM and SEM images of the two membrane surfaces strongly support this conclusion. These surface images reveal that the thin-film composite membrane exhibits large-scale surface roughness of ridge-and-valley structure, while the cellulose acetate membrane surface is relatively smooth.  相似文献   

5.
Effect of silane coupling agents on the performance of RO membranes   总被引:1,自引:0,他引:1  
This study investigates the effect of silane coupling agents on the performance of reverse osmosis (RO) membranes on the basis of sol–gel coating method. The surfaces of the RO membranes were chemically modified with four different alkoxysilanes in order to reduce their hydrophilicity. The objective of this study is to superpose hydrophobic polysiloxane layer on the surface of a polyamide TFC RO membrane and to increase the extent of salt rejection by the modified membranes. A commercial composite RO membrane (SWC1) was treated with silane coupling agents in ethanol at three different concentrations: 1.0, 1.5, and 2.0% (w/v). The silane coupling agents contain one alkyl or phenyl and three alkoxy groups (e.g., methyltriethoxysilane, octyltriethoxysilane, octadecyltrimethoxysilane and phenyltriethoxysilane). In addition, the effect of alkyl or phenyl group hydrophobicity on the permeability and salt rejection of the modified membrane was examined. The surfaces of the modified membranes were characterized by SEM, AFM, contact angle analyzer, and XPS in order to confirm successful sol–gel methods. The modified membranes showed significantly enhanced salt rejection without a decrease in flux. From the surface analysis results, we can observe the changes in the surface roughness, elemental composition, electron energy, and hydrophilicity.  相似文献   

6.
Surface modification using grafting of a hydrophilic polymer onto the membrane surface is a possible route to improving the fouling properties of polyamide thin-film composite membranes. The structure of nanofiltration (NF) and reverse osmosis (RO) membranes modified using graft polymerization of acrylic (AA) monomers was visualized and analyzed using attenuated total reflection–Fourier transform infrared spectroscopy, atomic force microscopy and transmission electron microscopy. The results show that a layer of AA polymer is indeed formed on the polyamide surface, which could be accompanied by a change of the surface morphology. It was observed that for the NF membranes studied polymerization could also take place inside the pores of the support as a result of penetration of the monomer through the active layer, particularly for high degrees of grafting. It suggests that the modification procedures should be optimized so that the latter effect is minimized.  相似文献   

7.
利用静电纺丝技术在无纺布上制备PET纳米纤维膜, 并用交联壳聚糖对其进行改性得到壳聚糖改性纳米纤维复合膜. 以间苯二胺(MPD)和均苯三甲酰氯(TMC)为单体, 采用界面聚合法在壳聚糖改性纳米纤维复合膜的表面制备聚酰胺分离层, 得到新型静电纺丝纳米纤维基复合反渗透膜. 新型复合反渗透膜具有典型的聚酰胺复合反渗透膜的表面脊-谷结构. 从膜的表面形貌、 亲水性、 分离性能等3个方面对水相MPD溶液中阴离子表面活性剂十二烷基苯磺酸钠(SDBS)的含量对膜结构和性能的影响进行了系统研究. 结果表明, SDBS的含量对膜形态结构的均匀性和亲水性有一定影响, 且随着SDBS含量的增加, 膜的脱盐率先增大后减小, 而通量小幅度上升后, 先减小后增大, 呈现规律性变化.  相似文献   

8.
Thin film composite (TFC) membranes based polyamide were prepared with m-phenylenediamine (MPD), m-phenylenediamine-5-sulfonic acid (SMPD) and trimesoyl chloride (TMC) through interfacial polymerization technique on the polysulphone supporting film. The membranes were characterized using permeation experiments with salt water, attenuated total reflectance infrared (ATR-IR) and X-ray photoelectronic spectroscopy (XPS) as well as scanning electronic microscopy (SEM). This study has shown that the active layer of TFC membrane is aromatic polyamide, including sulfuric acid function group (-SO3H) according to the result of ATR-IR and XPS. The NaCl rejection of RO membranes decreased and the flux increased when WSMPD/WMPD increased from 0 to 1, and the linear part with pendant -COOH in membrane barrier layer increased with the increase of SMPD content, but the surface of membrane becoming smoother and smoother with the increase of SMPD content. So the membranes performance mainly was determined by chemical structure in their barrier layer.  相似文献   

9.
Recent studies have shown that membrane surface morphology and structure influence permeability, rejection, and colloidal fouling behavior of reverse osmosis (RO) and nanofiltration (NF) membranes. This investigation attempts to identify the most influential membrane properties governing colloidal fouling rate of RO/NF membranes. Four aromatic polyamide thin-film composite membranes were characterized for physical surface morphology, surface chemical properties, surface zeta potential, and specific surface chemical structure. Membrane fouling data obtained in a laboratory-scale crossflow filtration unit were correlated to the measured membrane surface properties. Results show that colloidal fouling of RO and NF membranes is nearly perfectly correlated with membrane surface roughness, regardless of physical and chemical operating conditions. It is further demonstrated that atomic force microscope (AFM) images of fouled membranes yield valuable insights into the mechanisms governing colloidal fouling. At the initial stages of fouling, AFM images clearly show that more particles are deposited on rough membranes than on smooth membranes. Particles preferentially accumulate in the “valleys” of rough membranes, resulting in “valley clogging” which causes more severe flux decline than in smooth membranes.  相似文献   

10.
A serious limitation of most commercial polyamide reverse osmosis (RO) membranes is their sensitivity to chlorine attack. By studying the hypochlorite degradation of aromatic polyamide RO membrane, this work was to get some understandings in the prevention of membrane depreciation and develop membranes with improved chlorine resistance. Membrane performances, including water flux and salt rejection, were evaluated before and after hypochlorite exposure under different pH and concentration conditions. The results showed that chlorination destroyed hydrogen bonds in polyamide chains, causing a notable decline of membrane flux especially in acid environment; however, membrane performance was slightly improved after the treatment of alkaline hypochlorite solution for a certain time, which was probably due to the effect of amine groups in barrier layer. Based on the attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) characterizations and performance measurements, the results indicated that N-chlorination reaction of aromatic polyamide was also reversible, in other words, the N-chlorinated intermediate could be regenerated to initial amide with the alkaline treatment before ring-chlorination reaction. This conclusion provided several relative suggestions for membrane cleaning procedures. Finally, a method adopting surface coating was proposed to develop membranes with good chlorine resistance, and the preliminary results showed its potential for applications.  相似文献   

11.
The topmost polyamide (PA) layer of the thin-film-composite reverse osmosis (RO) membrane is the most important part in the membrane-based RO technology. With the aid of molecular dynamics simulations, many PA layer-related features in the RO process can be revealed. With many novel types of PA RO membranes out of trimesoyl chloride/m-phenylenediamine monomers developed in the laboratory, a convenient model building tool for these PA layer systems is urgently needed to conduct the theoretical analysis. Here, we develop a new universal toolkit for constructing PA RO membranes, named as MembrFactory, which combines flexibility of force fields and membrane compositions. A key characteristic of our approach is the use of monomers as the starting state, and the final membrane model was obtained automatically by stepwise reaction between the functional groups on the monomers. The reliability of MembrFactory has been validated by constructing several common PA RO membranes. © 2019 Wiley Periodicals, Inc.  相似文献   

12.
Effect of chemical structures of amines on the performance of isopropanol dehydration by pervaporation through the polyamide thin-film composite membranes prepared by various amines reacting with TMC on the surfaces of the modified asymmetric polyacrylonitrile (mPAN) membranes was investigated. ATR-FTIR, SEM, AFM and water contact angle were used to characterize the chemical structures, morphologies and hydrophilicity of the polyamide active layers of the composite membranes. To investigate the correlation between the free volume of polyamide active layer and pervaporation performance, the free volume variation of the polyamide active layers was probed by positron annihilation spectroscopy (PAS) experiments performed using the slow positron beam. It was found that the pervaporation performance for separating 90 wt.% aqueous isopropanol solutions at 25 °C decreased in the order of EDA–TMC/mPAN membrane > MPDA–TMC/mPAN membrane > PIP–TMC/mPAN and HDA–TMC/mPAN membranes. The relationship between the performance of isopropanol dehydration and the physicochemical properties of the polyamide layers, that is, the free volume, surface roughness and hydrophilicity seemed very well.  相似文献   

13.
The surfaces of six polymeric membranes—two polysulphone membranes, two composite reverse‐osmosis polyamide/polysulphone membranes having polyamide as the active layer and two activated membranes containing di‐2‐ethylhexylphosphoric acid and di‐2‐ethylhexyldithiophosphoric acid as carriers, respectively—have been characterized before and after irradiation with an x‐ray source, both chemically and topographically by XPS and atomic force microscopy (AFM), respectively. Changes in atomic concentrations of the characteristic elements of the membranes and in the shape of XPS spectra as a function of irradiation time can be related to chemical modifications on the membrane surface. The most significant changes have been observed for polysulphone, which is reduced by x‐ray action; this fact also shows the inhomogeneity of the surface of the di‐2‐ethylhexyldithiophosphoric‐activated membrane. In contrast, polyamide top layers of composite membranes have been shown to be the most stable. Chemical modifications are not related directly to changes in membrane roughness because for all membranes only small changes have been observed for AFM images recorded before and after membrane irradiation. Moreover, the roughness of both polysulphone membranes decreases slightly due to x‐ray radiation but increases slightly for all polyamide‐containing membranes (composite and activated membranes). Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
The effects of a water-permeable polymer coating on the performance and fouling of high-flux (ESPA1 and ESPA3) and low-flux (SWC4) polyamide reverse osmosis (RO) membranes were investigated. It was anticipated that the coating would create a smoother hydrophilic surface that would be less susceptible to fouling when challenged with a motor-oil/surfactant/water feed emulsion (used as a model foulant). AFM and FT-IR analyses confirm that a 1 wt.% polyether–polyamide (PEBAX® 1657) solution applied to ESPA and SWC4 membranes produces a continuous polymer coating layer and, thereby, provides smoother membrane surfaces. However, pure-water permeation data combined with a series-resistance model analysis reveal that the coating does not only cover the surface of the polyamide membrane, but also penetrates into its porous ridge-and-valley structure. During a long-term (106-day) fouling test with an oil/surfactant/water emulsion, the rate of flux decline was slower for coated than for uncoated membranes. This improvement in fouling resistance compensated for the decrease in permeate flux for SWC4 over a period of approximately 40 days. However, the coating material is believed to penetrate more deeply into the polyamide surface layer of the high flux, high surface area ESPA membranes relative to the low-flux SWC4, resulting in significant water flux reduction.  相似文献   

15.
A composite RO membrane with high salt rejection and high flux for the desalination of seawater was prepared by treating a porous polysulfone (PS) support sequentially with a di-amine and then with a polyfunctional acid chloride, thereby forming a thin film of polyamide (PA) on the PS support. In order to establish conditions for the development of suitable thin film composite (TFC) membranes on a coating machine, various parametric studies were carried out which included varying the concentration of reactants, reaction time, curing temperature and curing time for thin film formation by the interfacial polymerization technique. By suitable combination of these factors,a desired thin film of polyamide with improved performance for seawater desalination could be obtained. Moreover, the product water fluxes were considerably enhanced by post-treatment of the TFC membrane. Continuous sheets of TFCs were developed on the mechanical coating unit and tested for RO performance in a plate-and-frame configuration with synthetic seawater. The performance of these composite membranes was also determined for the separation of organics and compared with cellulose acetate (CA) membranes.  相似文献   

16.
Reverse osmosis (RO) membrane technology is widely employed to address the demands for freshwater. In this study, fabrication and performance evaluation of customized RO membranes comprised of Matrimid and polyacrylonitrile (PAN) is carried out. While exploring adoption of slip coating procedure, the effects of various modification techniques including incorporation of TiO2 nanoparticles and polyethylene glycol (PEG) into the skin layer as well as cross‐linking were investigated. The individual and combined effects of parameters on membrane morphology, surface characteristics and performance were also examined. Despite the distinctive characteristics of involved materials, delamination‐free composite membranes were successfully formed with an intimate contact at the interface of two layers. The results also indicated that increasing concentration of Matrimid in dope solution led to increase in membrane thickness and consequently decline in water flux. In the best case, membrane prepared using 1 wt.% Matrimid in dope exhibited water flux of 0.98 LMH and NaCl rejection of 95.7%. Also, incorporation of 3 wt.% TiO2 nanoparticles offered membranes with improved water flux of 1.37 LMH and salt rejection of 95.8%. On the other hand, water flux and salt rejection in membranes containing 5 wt.% PEG were 1.18 LMH and 96.2%, respectively. The co‐presence of both nanoparticles and PEG provided more insights about the contributing factors in tuned membranes. Modification of skin layer by cross‐linking significantly improved salt rejection at the expense of water flux. The results are scientifically interpreted and compared to the values reported in literature.  相似文献   

17.
A homologous series of thin-film composite membranes was prepared by interfacial polymerization of various bisphenols possessing structural variations and trimesoyl chloride (TMC). Correlations between the inherent chemical nature of bisphenols with methyl or halogen substitutions on the biphenyl rings, reverse osmosis (RO) characteristics, and surface features characterized by atomic force microscopy (AFM) were studied. The methyl substitutions in bisphenol phenyl rings resulted in membranes with higher RO water flux but lower RO rejection, tending to give membrane surface morphology of irregular ambiguous nodule structure with reduced size and a smoother surface. The halogen substitutions were found to play an important role in enhancing the RO rejection of the resulting membranes; the rough surface appearance of uniform distinct nodule structure may also have contributed to obtaining higher rejections.  相似文献   

18.
Membrane degradations by biofouling and free chlorine oxidation are the major obstacles for aromatic polyamide thin-film-composite (TFC) reverse osmosis (RO) membranes to realize high performance over a long period of operation. In this work, a hydantoin derivative, 3-monomethylol-5,5-dimethylhydantoin (MDMH), was grafted onto the nascent aromatic polyamide membrane surfaces by the reactions with active groups (e.g., acyl chloride groups) in the surfaces. The grafted MDMH moieties with high reaction activity and free chlorine could play as sacrificial pendant groups when membranes suffer from chlorine attacks, and the chlorination products N-halamines with strong antimicrobial function could sterilize microorganisms on membrane surfaces and then regenerate to MDMH. This was designed as a novel means to improve both chlorine resistances and anti-biofouling properties of the aromatic polyamide TFC RO membranes.Attenuated total reflectance mode Fourier transform infrared spectroscopy (ATR-FTIR) revealed that the MDMH-modified membranes had two characteristic bands at 1772 and 1709 cm−1 corresponding to two carbonyl groups in hydantoin ring. This suggested the successful grafting of MDMH onto the membrane surfaces, which was further confirmed and quantified by X-ray photoelectron spectroscopy (XPS) analysis. After modification with MDMH, the membrane surface hydrophilicity increased obviously as contact angles decreased from 57.7° to 50.4–31.5°. But, there was no obvious change in membrane surface roughness after modification. The MDMH-modified membranes were shown to possess high chlorine resistances with small changes in water fluxes and salt rejections after chlorination with 100–2000 ppm h chlorine at pH 4. The chlorinated MDMH-modified membranes demonstrated obvious sterilization effects on Escherchia coli and substantial preventions against microbial fouling. Therefore, the MDMH-modified membranes offer a potential use as a new type of chlorine resistance and anti-biofouling TFC RO membranes.  相似文献   

19.
Hybrid organically bridged silica membranes have attracted considerable attention because of their high performances in a variety of applications. Development of robust reverse osmosis (RO) membranes to withstand aggressive operating conditions is still a major challenge. Here, a new type of microporous organosilica membrane has been developed and applied in reverse osmosis. Sol-gel derived organosilica RO membranes reject isopropanol with rejection higher than 95%, demonstrating superior molecular sieving ability for neutral solutes of low molecular weight. Due to the introduction of an inherently stable hybrid network structure, the membrane withstands higher temperatures in comparison with commercial polyamide RO membranes, and is resistant to water to at least 90 °C with no obvious changes in filtration performance. Furthermore, both an accelerated chlorine-resistance test and Fourier transform infrared analysis confirm excellent chlorine stability in this material, which demonstrates promise for a new generation of chlorine-resistant RO membrane materials.  相似文献   

20.
Positron annihilation spectroscopy (PAS) coupled with a slow positron beam was used to characterize in situ the layer structure and depth profile of the cavity size in thin film composite (TFC) polyamide nanofiltration (NF) membranes prepared by the interfacial polymerization method. Two techniques, using PAS coupled with a slow positron beam of Doppler broadening energy spectra (DBES) and positron annihilation lifetime spectroscopy (PALS) designed to reveal the layer structure and the cavity sizes contained in a multilayer thin film composite NF membrane, were assessed. To the best knowledge of the authors, a characterization of the depth profile of cavities in NF membranes using PAS coupled with a slow positron beam has never been reported. The membranes selected have a composite structure containing three layers: a selective polyamide layer, a transition layer, and a porous support prepared by the phase inversion technique. Furthermore, the cavity size distribution in the selective top layer plays an important role in determining the performance of the NF membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号