首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 Experiments were carried out to investigate the effects of surface charge density on emulsion kinetics and secondary particle formation in emulsifier-free seeded emulsion polymerization. Three monodisperse seed latices with different surface charge densities were prepared from styrene/NaSS comonomers using the two-stage shot-growth process. After purification of the seed latices, they were used in seeded emulsion polymerization of methyl methacrylate. The initial rate of poly-merization and the average number of radicals per particle for the high-charged seed latex system were lower than that of the low-charged case. The low rate of polymerization resulted from the low rate of radical adsorption in the beginning of the reaction due to the electrical repulsion between seeds and oligomeric radicals. In this case, because of the secondary particles, particle size distribution became bimodal. The low rate of radical adsorption and the formation of secondary particles reduced the average number of radicals per particle. The rate of polymerization (R p) increased, but the rate of polymerization per particle (R p/N p) decreased. Received: 9 December 1996 Accepted: 7 March 1997  相似文献   

2.
Experiments with seeded polymerization in emulsifier-free systems were carried out with styrene in order to test the theory of particle nucleation presented in the first article in this series. The effect of amount, size, and surface charge density of the seed particles on the formation of new particles was investigated. An expression for the capture rate of oligomeric radicals from the water phase was evaluated in which the rate of capture was considered to be governed by the absorption of oligomers with chain length one less than the critical chain length for precipitation of the oligomer. Coagulation of primary particles was also included in the expression for the number of new particles obtained in the system. Limited coagulation of primary particles with already formed particles and with seed particles was found to play an important role in determining the final number of new particles found at the end of the runs.  相似文献   

3.
A simplified model for particle formation in emulsion polymerization (comprising aqueous‐phase propagation to degrees of polymerization which may enter a pre‐existing particle and/or form new particles by homogeneous or micellar nucleation, coupled with the aqueous‐phase and intra‐particle kinetics of oligomeric radicals) is formulated to provide a model suitable for the simulation of systems containing large‐sized particles. The model is particularly useful to explore conditions for growth of large particles while avoiding secondary particle formation. Applied to the Interval II emulsion polymerization of styrene with persulfate initiator at 50°C, it is found that there is an effective maximum particle size that can be achieved if the formation of new particles is to be avoided. The parameter space of initiator concentration, particle number concentration and particle radius is mapped to show a “catastrophe” surface at the onset of new nucleation. Advanced visualization techniques are used to interpret the large number of simulations in the series, showing a maximum achievable particle diameter of around 5 μm.  相似文献   

4.
This paper is the first in a series intended to clarify the particle nucleation mechanisms in emulsion polymerization. The theory for particle nucleation by precipitation of oligomeric radicals from the water phase is discussed and a model based on the diffusion, propagation and termination steps is presented. The physical factors that influence the capture rate of oligomers in particles are discussed, and qualitative expressions for the electrostatic repulsion and reversible diffusion are derived. These factors are shown to be able to explain the relatively slow absorption rate of oligomers in particles and micelles. A kinetic model for simultaneous particle nucleation and limited flocculation is presented. Numerical integration of this model shows that the particle number goes through a maximum and that simultaneous nucleation and flocculation of primary particles may take place after Interval I in an emulsion polymerization is finished.  相似文献   

5.
Previous attempts to prepare monodisperse styrene/sodium styrene sulfonate copolymer latexes by batch, seeded, and semicontinuous emulsion polymerization were unsuccessful at high concentrations of the functional comonomer. Broad, and sometimes bimodal, size distributions, and large amounts of water soluble homopolymer were obtained. After removal of free monomer, solute and adsorbed homopolymer and copolymer, the overall incorporation of the functional comonomer was found to be low. To overcome these problems, a two stage “shot-growth” or in situ seeding technique was developed. A first stage copolymerization was carried out with a low concentration of sodium styrene sulfonate: the purpose of the functional comonomer was to enhance the stability and regulate the size of the seed particles. When this reaction had reached high conversion (> 90%), a second stage monomer mixture was added. The ratio of styrene to sodium styrene sulfonate in this mixture determined the final surface charge density. The mechanism by which the NaSS is incorporated in the polymer particles is considered to be by solution copolymerization with solute styrene monomer to form surface active oligoradicals. These radicals adsorb on the particle surface, initiate polymerization and become inextricably bound, preventing their transfer back to the aqueous phase. By this means, it was possible to vary independently the particle size and surface charge density. High concentrations of functional comonomer could be polymerized without undue wastage (incorporations were only slightly less than 100%) or loss of monodispersity. In extreme cases, the area per functional group fell below the theoretical minimum, indicating considerable hydration of the surface layers.  相似文献   

6.
Polymerization in micellar systems is a technique which allows the preparation of ultrafine as well as coarse latex particles. This article presents a review of the current literature in the field of radical polymerization of classical monomers in micellar systems initiated by oil-soluble initiators. Besides a short introduction to some of the kinetic aspects of emulsion polymerization initiated by water-soluble initiators, we mainly focus on the kinetics and the mechanism of radical polymerization in o/w and w/o micellar systems initiated by classical oil-soluble initiators. The initiation of emulsion polymerization of an unsaturated monomer (styrene, butyl acrylate,...) by a water-soluble initiator (ammonium peroxodisulfate) is well understood. It starts in the aqueous phase and the initiating radicals enter the monomer-swollen micelle. The formed oligomeric radicals are surface active and increase the colloidal stability of the disperse system. Besides, the charged initiating radicals might experience the energetic barrier when entering the charged particle surface. The locus of initiation with oil-soluble initiators is more complex. It can partition between the aqueous-phase and the oil-phase. Besides, the surface-active oil-soluble initiator can penetrate into the interfacial layer. The dissolved oil-soluble initiator in the monomer droplet can experience the cage effect. The small fraction of the oil-soluble initiator dissolved in the aqueous phase takes part in the formation of radicals. The oligomeric radicals formed are uncharged and therefore, they do not experience the energetic barrier when entering the polymer particles. We summarize and discuss the experimental data of radical polymerization of monomers initiated by oil-soluble initiators in terms of partitioning an initiator among the different domains of the multiphase system. The inhibitor approach is used to model the formation of radicals and their history during the polymerization. The nature of the interfacial layer and the type of oil-soluble initiator including the surface active ones are related to the kinetic and colloidal parameters. The emulsifier type and reaction conditions in the polymerization are summarized and discussed.  相似文献   

7.
The principal subject discussed in the current paper is the radical polymerization in the aqueous emulsions of unsaturated monomers (styrene, alkyl (meth)acrylates, etc.) stabilized by non-ionic and ionic/non-ionic emulsifiers. The sterically and electrosterically stabilized emulsion polymerization is a classical method which allows to prepare polymer lattices with large particles and a narrow particle size distribution. In spite of the similarities between electrostatically and sterically stabilized emulsion polymerizations, there are large differences in the polymerization rate, particle size and nucleation mode due to varying solubility of emulsifiers in oil and water phases, micelle sizes and thickness of the interfacial layer at the particle surface. The well-known Smith-Ewart theory mostly applicable for ionic emulsifier, predicts that the number of particles nucleated is proportional to the concentration of emulsifier up to 0.6. The thin interfacial layer at the particle surface, the large surface area of relatively small polymer particles and high stability of small particles lead to rapid polymerization. In the sterically stabilized emulsion polymerization the reaction order is significantly above 0.6. This was ascribed to limited flocculation of polymer particles at low concentration of emulsifier, due to preferential location of emulsifier in the monomer phase. Polymerization in the large particles deviates from the zero-one approach but the pseudo-bulk kinetics can be operative. The thick interfacial layer can act as a barrier for entering radicals due to which the radical entry efficiency and also the rate of polymerization are depressed. The high oil-solubility of non-ionic emulsifier decreases the initial micellar amount of emulsifier available for particle nucleation, which induces non-stationary state polymerization. The continuous release of emulsifier from the monomer phase and dismantling of the non-micellar aggregates maintained a high level of free emulsifier for additional nucleation. In the mixed ionic/non-ionic emulsifiers, the released non-ionic emulsifier can displace the ionic emulsifier at the particle surface, which then takes part in additional nucleation. The non-stationary state polymerization can be induced by the addition of a small amount of ionic emulsifier or the incorporation of ionic groups onto the particle surface. Considering the ionic sites as no-adsorption sites, the equilibrium adsorption layer can be thought of as consisting of a uniform coverage with holes. The de-organization of the interfacial layer can be increased by interparticle interaction via extended PEO chains--a bridging flocculation mechanism. The low overall activation energy for the sterically stabilized emulsion polymerization resulted from a decreased barrier for entering radicals at high temperature and increased particle flocculation.  相似文献   

8.
The batch emulsion polymerization kinetics of styrene initiated by a water‐soluble peroxodisulfate at different temperatures in the presence of sodium dodecyl sulfate was investigated. The curves of the polymerization rate versus conversion show two distinct nonstationary‐rate intervals and a shoulder occurring at a high conversion, whereas the stationary‐rate interval is very short. The nonstationary‐state polymerization is discussed in terms of the long‐term particle‐nucleation period, the additional formation of radicals by thermal initiation, the depressed monomer‐droplet degradation, the elimination of charged radicals through aqueous‐phase termination, the relatively narrow particle‐size distribution and constant polydispersity index throughout the reaction, and a mixed mode of continuous particle nucleation. The maximum rate of polymerization (or the number of polymer particles nucleated) is proportional to the rate of initiation to the 0.27 power, which indicates lower nucleation efficiency as compared to classical emulsion polymerization. The low activation energy of polymerization is attributed to the small barrier for the entering radicals. The overall activation energy was controlled by the initiation and propagation steps. The high ratio of the absorption rate of radicals by latex particles to the formation rate of radicals in water can be attributed to the efficient entry of uncharged radicals and the additional formation of radicals by thermally induced initiation. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1477–1486, 2000  相似文献   

9.
Butyl acrylate conventional emulsion (macroemulsion) and miniemulsion polymerizations were carried out with an oil‐soluble initiator (azobisisobutyronitrile) in the presence or absence of an aqueous‐phase radical scavenger. For macroemulsion polymerization, in the presence of an aqueous‐phase radical scavenger, no particle nucleation occurred, whereas in the absence of an aqueous‐phase radical scavenger, particle nucleation proceeded as expected. For miniemulsion polymerization, the rate of polymerization was much higher in the absence of an aqueous‐phase radical scavenger than in its presence. Furthermore, in the absence of an aqueous‐phase radical scavenger, the miniemulsion polymerization rate increased with reduced droplet size, whereas in the presence of an aqueous‐phase radical scavenger, the trend was reversed. It is concluded that (1) for macroemulsion polymerization, the contribution from free radicals originating in the aqueous‐phase is predominant in the micellar nucleation of particles; (2) free radicals originating in the particle phase contribute to the rate of polymerization and the contribution increases with an increase in the particle size; and (3) for polymer particles with diameters of up to approximately 100 nm, polymerization is initiated from free radicals originating in the aqueous phase. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3200–3211, 2002  相似文献   

10.
It is well known that the amount of surfactant must be carefully controlled during starve-fed emulsion polymerization processes. Too little surfactant leads to emulsion instability and coagulation, while too much surfactant leads to secondary particle formation. Although these relationships are qualitatively understood in the art, there is little quantitative basis to guide the synthetic chemist, especially in multistep starve-fed emulsion polymerization processes to make larger supermicron particles. We have developed a method, which will be described in a companion article, to control the surfactant level by monitoring the surface tension during polymerization. In order to quantitatively predict how much surfactant to add at any given time, one needs to know in advance the adsorption characteristics of the soap. Further complicating the matter is the formation of “in situ” or oligomeric surfactant during polymerization with aqueous initiators such as ammonium persulfate. This work demonstrates how to prepare surface-active oligomers and how to make latex particles using them as surfactant. First, we established the mass balance for the initiator-derived sulfate groups in seed latexes by conductometric, potentiometric, and iodometric titrations. Based on the characterization of seed latexes, a method for determining the effective sulfate concentration has been developed. When surface-active oligomers were used as the only surfactant, we obtained a series of monodisperse, supermicron copolymer latex particles with diameters up to 3.22 μm. This is a similar result to that obtained with a commercially made anionic surfactant. © 1995 John Wiley & Sons, Inc.  相似文献   

11.
The inverse emulsion polymerization of aqueous solution of acrylamide in toluene has been studied at 40°C using a blend of surfactants as emulsifying system and oil soluble azo initiators. The azo compound partition between the phases has been measured and the effects of their nature and concentration on the polymerization kinetics have been investigated. The influence of other parameters on the kinetics and particle size of the inverse latex have also been investigated: the nature and amount of the emulsifier system, the stirring rate, and the presence of oil-soluble inhibitor. The particle-size analysis using electron microscopy or dynamic light-scattering methods showed the presence of two populations of particles in the initial monomer emulsion and in the final inverse latex: one with very tiny particles (20 nm diam) and the other with larger particles (80–400 nm diam) which is highly polydispersed. The average size of these large particles undergoes a sharp decrease at a certain percent conversion depending upon the stirring rate. The evolution of the particle size distribution may result from a balance between coalescence and dispersion of the emulsion droplets under the effect of prevailing shear rate due to agitation. Concerning the initiation process, the very low solubility of the azo compound in the aqueous solution, together with the effect of the stirring rate and the presence of an oil-soluble inhibitor on the polymerization kinetics lead to the conclusion that most of the initiaton originates from the capture of radicals or oligomeric radicals produced in the oil phase or in the interfacial layer.  相似文献   

12.
A systematic study of the adsorption of charged nanoparticles at dispersed oil-in-water emulsion interfaces is presented. The interaction potentials for negatively charged hexadecane droplets with anionic polystyrene latex particles or cationic gold particles are calculated using DLVO theory. Calculations demonstrate that increased ionic strength decreases the decay length of the electrostatic repulsion leading to enhanced particle adsorption. For the case of anionic PS latex particles, the energy barrier for particle adsorption is also reduced when the surface charge is neutralized through changes in pH. Complementary small-angle scattering experiments show that the highest particle adsorption for PS latex occurs at moderate ionic strength and low pH. For cationic gold particles, simple DLVO calculations also explain scattering results showing that the highest particle adsorption occurs at neutral pH due to the electrostatic attraction between oppositely charged surfaces. This work demonstrates that surface charges of particles and oil droplets are critical parameters to consider when engineering particle-stabilized emulsions.  相似文献   

13.
The concept of nonuniform distribution of free radicals in polymerizing latex particles has been incorporated into the development of a kinetic model for grafting reactions. This theory permits prediction of grafting efficiency as a function of reaction conditions. It can also be used for evaluation of rate constants for grafting reactions. Experimental data for emulsion polymerization of styrene in the presence of polybutadiene seed latex have been used to assess the proposed grafting theory. The predominant grafting reaction appears to be the attack of growing polystyrene chains on the allyl hydrogen atoms of polybutadiene. The results further reinforce the hypothesis that the entering oligomeric free radicals do not distribute uniformly within the particle volume.  相似文献   

14.
Measurements of the rate coefficients characterising the entry of free radicals into seed particles in styrene emulsion polymerizations has allowed the rate determining step for entry to be identified. This was found to be the rate of production of oligomeric species in the aqueous phase by monomer addition to the primary free radicals. Once formed the subsequent diffusion of these species to the latex particles (and their incorporation within these particles) is relatively fast, contrary to the assumptions of the previous diffusion controlled theories. The experimental results imply that the entering free radicals contain only two or three monomer units. Thermodynamic considerations show that such species should be both water soluble and surface active. Similar conclusions have been reached for other sparingly water soluble monomers, such as butyl acrylate and butyl methacrylate.  相似文献   

15.
This work reports the morphology of two-phase latex particles prepared by semi-continuous seed emulsion polymerization of styrene in the presence of polar poly(methyl methacrylate), PMMA, seed particles, using different conditions of non-polar styrene feed rate, rate of initiation, seed particle concentration and temperature of polymerization.The expected latex particle morphology at thermodynamic equilibrium is an inverted core-shell structure where the non-polar polystyrene would form the core. However, depending on the set of process conditions used the morphology of the resulting two-phase particles varied from that of a pure core-shell structure, over intermediate structures in which a shell of PS surrounded a PMMA core containing an increasing number of PS phase domains, to a structure in which the entire PS phase was present as discrete PS phase domain, more or less evenly distributed in a matrix of PMMA.By the use of a caloirimetric reactor system the monomer concentration in the particles during the different polymerization experiments could be calculated by comparing the integral of the polymerization rate curve with the integral of the monomer feed rate. A comparison between particle morphology and the calculated concentration of plasticizing monomer in the polymerizing particles strongly suggested that the diffusivity of the entering oligo radicals determined by the difference between polymerization temperature and the glass transition temperature of the monomer-swollen core polymer is a key factor determining the morphology of two-phase particles prepared by semi-continuous seed emulsion polymerization.Two-phase particles with a true core-shell structure were obtained in experiments where the estimated glass transition temperature of the PMMA phase was only a few degrees below the polymerization temperature. The results show that such particles can be obtained under conditions of high as well as low styrene feed rates, provided that the rate of initiation is properly adjusted.  相似文献   

16.
The effect of the monomer/water ratio on the rate of polymerization per polymer particle in both seeded emulsion polymerizations and miniemulsion polymerizations was used in an attempt to elucidate the main locus of radical formation in emulsion polymerization initiated by an oil-soluble initiator (AIBN). It was found that, for the rest of conditions constant, the polymerization rate per polymer particle increased when the monomer/water ratio increased, namely when the amount of initiator dissolved in the aqueous phase per polymer particle decreased. This is an evidence against a dominant aqueous phase formation of radicals. On the other hand, these results are consistent with a mechanism in which the radicals are mainly produced in the oil-phase with significant aqueous phase termination.  相似文献   

17.
Particle formation and coagulation in the seeded semibatch emulsion polymerization of butyl acrylate were studied under monomer‐starved conditions. To investigate the importance of the kinetics of the water phase in the nucleation process, the monomer feed rate was used as a variable to alter the monomer concentration in the aqueous phase. The emulsifier concentration in the feed was employed to alter the particle stability. Particle formation and coagulation were discussed in terms of critical surface coverage ratios. Particle coagulation occurred if the particle surface coverage dropped below θcr1 = 0.25 ± 0.05. The secondary nucleation occurred above a critical surface coverage of θcr2 = 0.55 ± 0.05. The number of particles remained approximately constant if the particle surface coverage was within θcr1 = 0.25 < θ < θcr2 = 0.55. This surface coverage band is equivalent to the surface tension band of 42.50 ± 5.0 dyne/cm that is required to avoid particle formation and coagulation in the course of polymerization. The kinetics of the water phase was shown to play an important role during homogeneous and micellar nucleations. For any fixed emulsifier concentration in the feed and above θcr2, the number of secondary particles increased with monomer concentration in the aqueous phase. Moreover, the presence of micelles in the reaction vessel is not the only perquisite for micellar nucleation to occur, a sufficient amount of monomer should be present in the aqueous phase to enhance the radical capture by partially monomer‐swollen micelles. The rate of polymerization increased with the surfactant concentration in the aqueous phase. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3612–3630, 2000  相似文献   

18.
Studies of seeded and unseeded polymerization of styrene using sodium dodecylsulfate as emulsifier have been carried out in order to investigate the mechanism of particle nucleation in such systems and to test the theory presented in Part I of this series. The rate of capture of water-soluble oligomeric radicals was considered to be governed by absorption of oligomers with chain length one less than the critical chain length. It was concluded that the micelles became the dominating loci for particle nucleation above CMC for the emulsifier. A complete nonsteady-state model for particle initiation above CMC which takes into account radical desorption and reabsorption has been developed. It was indicated that, even for styrene, desorption of radicals may play a role in controlling the radical and particle number of interval I under certain conditions. The model also showed that the efficiencies of particles in absorbing radicals could be calculated from physical parameters, such as diffusion constants and surface charge densities, which are available for the system.  相似文献   

19.
Aminodextran containing submicron magnetic latex particles were prepared in two steps: (a) transformation of oil-in-water magnetic emulsion into structured magnetic latex particles via combination of seed and miniemulsion-like polymerization process and (b) immobilization (adsorption and chemical grafting) of prepared aminodextran onto negatively charged seed magnetic latex particles. The elaborated magnetic latex particles were characterized in terms of particle size, size distribution, morphology, surface charge density, chemical composition, magnetic properties, and also colloidal stability. The results showed that the morphology of the prepared seed magnetic latex is core–shell like and the cationic latex particles are hydrophilic and of high colloidal stability, irrespective of the aminodextran immobilization process.  相似文献   

20.
The electrostatic interactions between amphoteric polymethyl methacrylate latex particles and proteins with different pI values were investigated. These latex particles possess a net positive charge at low pH, but they become negatively charged at high pH. The nature and degree of interactions between these polymer particles and proteins are primarily controlled by the electrostatic characteristics of the particles and proteins under the experimental conditions. The self-promoting adsorption process from the charge neutralization of latex particles by the proteins, which have the opposite net charge to that of the particles, leads to a rapid reduction in the zeta potential of the particles (in other words colloidal stability), and so strong flocculation occurs. On the other hand, the electrostatic repulsion forces between similarly charged latex particles and the proteins retard the adsorption of protein molecules onto the surfaces of the particles. Therefore, latex particles exhibit excellent colloidal stability over a wide range of protein concentrations. A transition from net negative charge to net positive charge, and vice versa (charge reversal), was observed when the particle surface charge density was not high enough to be predominant in the protein adsorption process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号