首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We consider a problem of scheduling a set of independent jobs by two agents on a single machine. Every agent has its own subset of jobs to be scheduled and uses its own optimality criterion. The processing time of each job proportionally deteriorates with respect to the starting time of the job. The problem is to find a schedule that minimizes the total tardiness of the first agent, provided that no tardy job is allowed for the second agent. We prove basic properties of the problem and give a lower bound on the optimal value of the total tardiness criterion. On the basis of these results, we propose a branch-and-bound algorithm and an evolutionary algorithm for the problem. Computational experiments show that the exact algorithm solves instances up to 50 jobs in a reasonably short time and that solutions obtained by the metaheuristic are close to optimal ones.  相似文献   

2.
In this paper, we consider a machine scheduling problem where jobs should be completed at times as close as possible to their respective due dates, and hence both earliness and tardiness should be penalized. Specifically, we consider the problem with a set of independent jobs to be processed on several identical parallel machines. All the jobs have a given common due window. If a job is completed within the due window, then there is no penalty. Otherwise, there is either a job-dependent earliness penalty or a job-dependent tardiness penalty depending on whether the job is completed before or after the due window. The objective is to find an optimal schedule with minimum total earliness–tardiness penalty. The problem is known to be NP-hard. We propose a branch and bound algorithm for finding an optimal schedule of the problem. The algorithm is based on the column generation approach in which the problem is first formulated as a set partitioning type formulation and then in each branch and bound iteration the linear relaxation of this formulation is solved by the standard column generation procedure. Our computational experiments show that this algorithm is capable of solving problems with up to 40 jobs and any number of machines within a reasonable computational time.  相似文献   

3.
Motivated by just-in-time manufacturing, we consider a single machine scheduling problem with dual criteria, i.e., the minimization of the total weighted earliness subject to minimum number of tardy jobs. We discuss several dominance properties of optimal solutions. We then develop a heuristic algorithm with time complexity O(n3) and a branch and bound algorithm to solve the problem. The computational experiments show that the heuristic algorithm is effective in terms of solution quality in many instances while the branch and bound algorithm is efficient for medium-size problems.  相似文献   

4.
This paper addresses the production and delivery scheduling integration problem; a manufacturer receives orders from one customer while the orders need to be processed on one or two machines and be sent to the customer in batches. Sending several jobs in batches will reduce the transportation cost but it may increase the number of tardy jobs. The objective is to minimize the sum of the total weighted number of tardy jobs and the delivery costs. The structural properties of the problem for a single machine and special cases of the two-machine flow shop problem are investigated and used to set up a new branch and bound algorithm. A heuristic algorithm for upper bound calculation and two approaches for lower bound calculation are also introduced. Results of computational tests show significant improvement over an existing dynamic programming method.  相似文献   

5.
In this paper, the problem of sequencing jobs on a single machine to minimize the weighted number of tardy jobs is considered. Some new dominances between jobs are proposed and studied. A new branch and bound algorithm that can solve large problems, e.g. 85 jobs, is presented.  相似文献   

6.
This paper presents a parallel machine scheduling problem with rework probabilities, due-dates and sequence-dependent setup times. It is assumed that rework probability for each job on a machine can be given through historical data acquisition. Since the problem is NP-hard in the strong sense, a heuristic algorithm is presented, which finds good solutions. The dispatching algorithm named MRPD (minimum rework probability with due-dates) is proposed in this paper focusing on the rework processes. The performance of MRPD is measured by the six diagnostic indicators: total tardiness, maximum lateness, mean flow-time, mean lateness, the number of reworks and the number of tardy jobs. A large number of test problems are randomly generated to evaluate the performance of the proposed algorithm. Computational results show that the proposed algorithm is significantly superior to existing dispatching algorithms for the test problems.  相似文献   

7.
There is a fabrication machine available for processing a set of jobs. Each job is associated with a due date and consists of two parts, one is common among all products and the other is unique to itself. The unique components are processed individually and the common parts are grouped into batches for processing. A constant setup time is incurred when each batch is formed. The completion time of a job is defined as the time when both of its unique and common components are completed. In this paper, we consider two different objectives. The first problem seeks to minimize the maximum tardiness, and the second problem is to minimize the number of tardy jobs. To minimize the maximum tardiness, we propose a dynamic programming algorithm that optimally solves the problem in polynomial time. Next, we show NP-hardness proof and design a pseudo-polynomial time dynamic programming algorithm for the problem of minimizing the number of tardy jobs.  相似文献   

8.
We consider uniform parallel machine scheduling problems with unit-length jobs where every job is only allowed to be processed on a specified subset of machines. We develop efficient methods to solve problems with various objectives, including minimizing a total tardiness function, a maximum tardiness function, total completion time, the number of tardy jobs, the makespan, etc.  相似文献   

9.
This research focuses on the problem of scheduling jobs on two identical parallel machines that are not continuously available with the objective of minimizing total tardiness. After processing a given number of jobs, each machine requires a preventive maintenance task, during which the machine cannot process jobs. We present dominance properties and lower bounds, and develop a branch and bound algorithm using these properties and lower bounds as well as an upper bound obtained from a heuristic algorithm. Performance of the algorithm is evaluated through a series of computational experiments on randomly generated instances and results are reported.  相似文献   

10.
In this paper, we consider some scheduling problems on a single machine, where weighted or unweighted total tardiness has to be maximized in contrast to usual minimization problems. These problems are theoretically important and have also practical interpretations. For the total weighted tardiness maximization problem, we present an NP-hardness proof and a pseudo-polynomial solution algorithm. For the unweighted total tardiness maximization problem with release dates, NP-hardness is proven. Complexity results for some other classical objective functions (e.g., the number of tardy jobs, total completion time) and various additional constraints (e.g., deadlines, weights and/or release dates of jobs may be given) are presented as well.  相似文献   

11.
The relocation problem addressed in this paper is to determine a reconstruction sequence for a set of old buildings, under a limited budget, such that there is adequate temporary space to house the residents decanted during rehabilitation. It can be regarded as a resource-constrained scheduling problem where there is a set of jobs to be processed on a single machine. Each job demands a number of resources for processing and returns probably a different number of resources on its completion. Given a number of initial resources, the problem seeks to determine if there is a feasible sequence for the successful processing of all the jobs. Two generalizations of the relocation problem in the context of single machine scheduling with due date constraints are studied in this paper. The first problem is to minimize the weighted number of tardy jobs under a common due date. We show that it is NP-hard even when all the jobs have the same tardy weight and the same resource requirement. A dynamic programming algorithm with pseudo-polynomial computational time is proposed for the general case. In the second problem, the objective is to minimize the maximum tardiness when each job is associated with an individual due date. We prove that it is strongly NP-hard. We also propose a pseudo-polynomial time dynamic programming algorithm for the case where the number of possible due dates is predetermined.  相似文献   

12.
This paper studies a two-machine scheduling problem with deteriorating jobs which their processing times depend on their waiting time. We develop a branch and bound algorithm to minimize the total tardiness criteria. A lower bound, several dominance properties and an initial upper bound derived from a heuristic algorithm are used to increase the speed of branch and bound algorithm and decrease its required memory space. Computational results are presented to evaluate effectiveness and efficiency of the algorithms.  相似文献   

13.
This paper considers a scheduling problem in a two-machine flowshop of two batch processing machines. On each batch processing machine, jobs are processed in a batch, and each batch is allowed to contain jobs up to the maximum capacity of the associated machine. The scheduling problem is analyzed with respect to three due date related objectives including maximum tardiness, number of tardy jobs and total tardiness. In the analysis, several solution properties are characterized and based upon these properties, three efficient polynomial time algorithms are developed for minimizing the due date related measures.  相似文献   

14.
In this paper we study the no-wait or no-idle permutation flowshop scheduling problem with an increasing and decreasing series of dominating machines. The objective is to minimize one of the five regular performance criteria, namely, total weighted completion time, maximum lateness, maximum tardiness, number of tardy jobs and makespan. We establish that these five cases are solvable by presenting a polynomial-time solution algorithm for each case.  相似文献   

15.
We address the bicriteria problem of minimizing the number of tardy jobs and maximum earliness on a single machine where machine idle time is allowed. We show that the problem of minimizing the number of tardy jobs while maximum earliness is kept at its minimum value of zero is polynomially solvable. We present polynomial time algorithms for the maximum earliness problem subject to no tardy jobs and the maximum earliness problem for a given set of tardy jobs. Finally, we discuss the use of the latter algorithm in generating all efficient schedules.  相似文献   

16.
We consider two linear project time–cost tradeoff problems with multiple milestones. Unless a milestone is completed on time, penalty costs for tardiness may be imposed. However, these penalty costs can be avoided by compressing the processing times of certain jobs that require additional resources or costs. Our model describes these penalty costs as the total weighted number of tardy milestone. The first problem tries to minimize the total weighted number of tardy milestones within the budget for total compression costs, while the second problem tries to minimize the total weighted number of tardy milestones plus total compression costs. We develop a linear programming formulation for the case with a fixed number of milestones. For the case with an arbitrary number of milestones, we show that under completely ordered jobs, the first problem is NP-hard in the ordinary sense while the second problem is polynomially solvable.  相似文献   

17.
The paper proposes a new exact approach, based on a Branch, Bound, and Remember (BB&R) algorithm that uses the Cyclic Best First Search (CBFS) strategy, for the 1|r i |∑U i scheduling problem, a single machine scheduling problem, where the objective is to find a schedule with the minimum number of tardy jobs. The search space is reduced using new and improved dominance properties and tighter upper bounds, based on a new dynamic programming algorithm. Computational results establish the effectiveness of the BB&R algorithm with CBFS for a broad spectrum of problem instances. In particular, this algorithm was able to solve all problems instances, up to 300 jobs, while existing best known algorithms only solve problems instances up to 200 jobs. Furthermore, the BB&R algorithm with CBFS runs one to two orders of magnitude faster than the current best known algorithm on comparable instances.  相似文献   

18.
A branch and bound algorithm is presented for the problem of schedulingn jobs on a single machine to minimize tardiness. The algorithm uses a dual problem to obtain a good feasible solution and an extremely sharp lower bound on the optimal objective value. To derive the dual problem we regard the single machine as imposing a constraint for each time period. A dual variable is associated with each of these constraints and used to form a Lagrangian problem in which the dualized constraints appear in the objective function. A lower bound is obtained by solving the Lagrangian problem with fixed multiplier values. The major theoretical result of the paper is an algorithm which solves the Lagrangian problem in a number of steps proportional to the product ofn 2 and the average job processing time. The search for multiplier values which maximize the lower bound leads to the formulation and optimization of the dual problem. The bounds obtained are so sharp that very little enumeration or computer time is required to solve even large problems. Computational experience with 20-, 30-, and 50-job problems is presented.  相似文献   

19.
This paper presents a Branch, Bound, and Remember (BB&R) exact algorithm using the Cyclic Best First Search (CBFS) exploration strategy for solving the ${1|ST_{sd}|\sum T_{i}}$ scheduling problem, a single machine scheduling problem with sequence dependent setup times where the objective is to find a schedule with minimum total tardiness. The BB&R algorithm incorporates memory-based dominance rules to reduce the solution search space. The algorithm creates schedules in the reverse direction for problems where fewer than half the jobs are expected to be tardy. In addition, a branch and bound algorithm is used to efficiently compute tighter lower bounds for the problem. This paper also presents a counterexample for a previously reported exact algorithm in Luo and Chu (Appl Math Comput 183(1):575–588, 2006) and Luo et?al. (Int J Prod Res 44(17):3367–3378, 2006). Computational experiments demonstrate that the algorithm is two orders of magnitude faster than the fastest exact algorithm that has appeared in the literature. Computational experiments on two sets of benchmark problems demonstrate that the CBFS search exploration strategy can be used as an effective heuristic on problems that are too large to solve to optimality.  相似文献   

20.
We propose a column generation based exact decomposition algorithm for the problem of scheduling n jobs with an unrestrictively large common due date on m identical parallel machines to minimize total weighted earliness and tardiness. We first formulate the problem as an integer program, then reformulate it, using Dantzig–Wolfe decomposition, as a set partitioning problem with side constraints. Based on this set partitioning formulation, a branch and bound exact solution algorithm is developed for the problem. In the branch and bound tree, each node is the linear relaxation problem of a set partitioning problem with side constraints. This linear relaxation problem is solved by column generation approach where columns represent partial schedules on single machines and are generated by solving two single machine subproblems. Our computational results show that this decomposition algorithm is capable of solving problems with up to 60 jobs in reasonable cpu time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号