首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fourier transform infrared (FTIR) smog chamber techniques were used to investigate the atmospheric chemistry of the isotopologues of methane. Relative rate measurements were performed to determine the kinetics of the reaction of the isotopologues of methane with OH radicals in cm3 molecule−1 s−1 units: k(CH3D + OH) = (5.19 ± 0.90) × 10−15, k(CH2D2 + OH) = (4.11 ± 0.74) × 10−15, k(CHD3 + OH) = (2.14 ± 0.43) × 10−15, and k(CD4 + OH) = (1.17 ± 0.19) × 10−15 in 700 Torr of air diluent at 296 ± 2 K. Using the determined OH rate coefficients, the atmospheric lifetimes for CH4–xDx (x = 1–4) were estimated to be 6.1, 7.7, 14.8, and 27.0 years, respectively. The results are discussed in relation to previous measurements of these rate coefficients.  相似文献   

2.
The synthesis of enantiomerically pure aluminium, gallium and indium complexes supported by chiral (R,R)‐(HHONNOHH) ( 1 ), (R,R)‐(MeHONNOHMe) ( 2 ), (R,R)‐(tButBuONNOtButBu) ( 3 ), (R,R)‐(MeNO2ONNOMeNO2) ( 4 ), (R,R)‐(HOMeONNOHOMe) ( 5 ) and (R,R)‐(ClClONNOClCl) ( 6 ) (1,2)‐diphenylethylene‐salen ligands is described. Several of these complexes have been crystallographically authenticated, which highlights a diversity of coordination patterns. Whereas all Ga complexes form [Ga2(CH2SiMe3)4(ONNO)] bimetallic species (ONNO= 1 – 3 ), aluminium [AlR(ONNO)] (R=Me, CH2SiMe3) and indium [In(CH2SiMe3)(ONNO)] derivatives are monometallic for ONNO= 1 , 2 and 4 – 6 , and only form the bimetallic complexes [Al2R4(ONNO)] and [In2(CH2SiMe3)4(ONNO)] for the most sterically crowded ligand 3 . The [AlMe(ONNO)] complexes react with iPrOH to give [AlOiPr(ONNO)] complexes that are robust towards further iPrOH. The [In(CH2SiMe3)(ONNO)] congeners are inert towards excess alcohol, whereas the Ga compounds decompose easily. All these alkyl complexes, as well as the [AlOiPr(ONNO)] derivatives, catalyse the ring‐opening polymerisation (ROP) of racemic lactide (rac‐LA). The [AlMe(ONNO)] complexes require additional alcohol to afford controlled reactions, but [AlOiPr(ONNO)] complexes are single‐component catalysts for the isoselective ROP of rac‐LA, with values of Pm in the range 0.80–0.90. Experimental evidence unexpectedly shows that chain‐end control leads to the isoselectivity of these aluminium catalysts; also, the more crowded the coordination sphere, the higher the isoselectivity. The bimetallic Ga complexes do not afford controlled reactions, but the binary [In(ONNO)(CH2SiMe3)/(PhCH2OH)] systems competently mediate non‐stereoselective ROP; evidence is given that an activated monomer mechanism is at work. Kinetic studies show that catalytic activity decreases when electronic density and steric congestion at the metal atom increase.  相似文献   

3.
Solutions of the fluorous alkyl halides Rf8(CH2)mX (Rfn=(CF2)n?1CF3; m=2, 3; X=Cl, Br, I) in perfluoromethylcyclohexane or perfluoromethyldecalin are inert towards solid or aqueous NaCl, NaBr, KI, KCN, and NaOAc. However, halide substitution occurs in the presence of fluorous phosphonium salts (Rf8(CH2)2)(Rf6(CH2)2)3P+X? (X=I ( 1 ), Br ( 3 )) and (Rf8(CH2)2)4P+I? (10 mol %), which are soluble in the fluorous solvents under the reaction conditions (76–100 °C). Stoichiometric reactions of a) 1 with Rf8(CH2)2Br and b) 3 with Rf8(CH2)2I were conducted under homogenous conditions in perfluoromethyldecalin at 100 °C and yielded the same Rf8(CH2)2I/Rf8(CH2)2Br equilibrium ratio (≈60:40). This shows that ionic displacements can take place in extremely nonpolar fluorous phases and suggests a classical phase‐transfer mechanism for the catalyzed reactions. Interestingly, the nonfluorous salt (CH3(CH2)11)(CH3(CH2)7)3P+I? ( 4 ) also catalyzes halide substitutions, but under triphasic conditions with 4 suspended between the lower fluorous and upper aqueous layers. NMR experiments established very low solubilities in both phases, which suggests interfacial catalysis. Catalyst 1 is easily recycled, optimally by simple precipitation onto teflon tape.  相似文献   

4.
The first vertical electron affinities EA of 13 series of molecules and free radicals D(X i ) n are related to the inductive (σ I ), resonance (σ R ? ), and polarization (σα) parameters of substituents X i by the dependences EA = EA H + aΣσ I + bΣσ R/? + cΣσα: In radical anions D(X i ) n , compared to radical cations D(X i ) n , the polarization interaction is weaker or similar in magnitude but has an opposite sign. The previously unknown resonance parameters σ R ? of substituents SiMe3 and CH2SiMe3 bound to the radical anion center H2C=CH were calculated.  相似文献   

5.
The kinetics of the reactions of Cl atoms with CH3ONO and CH3ONO2 have been studied using relative rate techniques. In 700 Torr of nitrogen diluent at 295 ± 2K, k(Cl + CH3ONO) = (2.1 ± 0.2) × 10−12 and k(Cl + CH3ONO2) = (2.4 ± 0.2) × 10−13 cm3 molecule−1 s−1. The result for k(Cl + CH3ONO2) is in good agreement with the literature data. The result for k(Cl + CH3ONO) is a factor of 4.5 lower than that reported previously. It seems likely that in the previous study most of the loss of CH3ONO which was attributed to reaction with Cl atoms was actually caused by photolysis leading to an overestimate of k(Cl + CH3ONO). © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 357–359, 1999  相似文献   

6.
The parabolic model of radical abstraction reactions is used to analyze experimental data on monomolecular hydrogen-atom transfer in the reactionsRC.H(CH2) n CH2R1 RCH2(CH2) n C.HR1(n= 2, 3, 4)RCH(O.)(CH2)2CH2R1 RCH(OH)(CH2)2C.HR1 RCH(OO.)(CH2) n CH2R1 RCH(OOH)(CH2) n C.HR1(n= 1, 2).The activation energies and rate constants that specify each class of these reactions are calculated. Alkyl radical isomerization is characterized by the following activation energies of a thermally neutral reaction depending on the cycle size in the transition state (nis the number of atoms in a cycle): E e , 0(kJ/mol) = 46.6 (n= 6), 59.4 (n= 5), and 57.1 (n= 7). Alkoxy radicals isomerize with E e , 0(kJ/mol) = 53.4 (n= 6), whereas peroxy radicals isomerize with E e , 0(kJ/mol) = 53.2 (n= 6) and E e , 0(kJ/mol) = 54.8 (n= 7). The E e , 0value varies with changes in the cycle size and the strain energy in cycloparaffin C n H2n in the same manner. The activation energies E e , 0for the intra- and intermolecular H-atom abstractions are compared. It is found that E e , 0(isomerization) < E e , 0(R.+ R1H) for alkyl radicals and that E e , 0(isomerization) E e , 0(RO.(RO.) + R1H) for alkoxy and peroxy radicals.  相似文献   

7.
Smog chamber/Fourier transform infrared (FTIR) techniques were used to measure the kinetics of the reaction of n‐CH3(CH2)xCN (x = 0–3) with Cl atoms and OH radicals: k(CH3CN + Cl) = (1.04 ± 0.25) × 10−14, k(CH3CH2CN + Cl) = (9.20 ± 3.95) × 10−13, k(CH3(CH2)2CN + Cl) = (2.03 ± 0.23) × 10−11, k(CH3(CH2)3CN + Cl) = (6.70 ± 0.67) × 10−11, k(CH3CN + OH) = (4.07 ± 1.21) × 10−14, k(CH3CH2CN + OH) = (1.24 ± 0.27) × 10−13, k(CH3(CH2)2CN + OH) = (4.63 ± 0.99) × 10−13, and k(CH3(CH2)3CN + OH) = (1.58 ± 0.38) × 10−12 cm3 molecule−1 s−1 at a total pressure of 700 Torr of air or N2 diluents at 296 ± 2 K. The atmospheric oxidation of alkyl nitriles proceeds through hydrogen abstraction leading to several carbonyl containing primary oxidation products. HC(O)CN, NCC(O)OONO2, ClC(O)OONO2, and HCN were identified as the main oxidation products from CH3CN, whereas CH3CH2CN gives the products HC(O)CN, CH3C(O)CN, NCC(O)OONO2, and HCN. The oxidation of n‐CH3(CH2)xCN (x = 2–3) leads to a range of oxygenated primary products. Based on the measured OH radical rate constants, the atmospheric lifetimes of n‐CH3(CH2)xCN (x = 0–3) were estimated to be 284, 93, 25, and 7 days for x = 0,1, 2, and 3, respectively.  相似文献   

8.
A criterion was proposed to estimate the necessity of the derivatization of organic substances for their determination on conventional nonpolar phases, based on such characteristic of analytes as molecular weight (M r), normal boiling point (T bp), and molar refraction (MR D). All these constants can be presented as indices relative to nonpolar n-alkanes (similarly to chromatographic retention indices), I(M), I(T), and I(MR D), which can be compared to each other as differences ΔT − M = I(T) − I(M) and ΔT − M R D = I(T) − I(MR D). Substances do not require derivatization if ΔT − M < 400 and ΔT − M R D < 600, while at ΔT − M > 600 and ΔT − MRD > 800, derivatization is necessary.  相似文献   

9.
It is noted that the pK a values of organic acids can be calculated using the unique recurrence relation pK a(n + 1) = apK a(n) + b from the pK a values of other (usually the simplest and, consequently, better characterized) homologues of the same series. It is shown that this relation is valid within two taxonomic groups: insertion homologues of the ω-substituted acids X(CH2) n CO2H (n ≥ 1) and isomers that differ in the position of substituents X in their alkyl fragments, k-X(C n H2n )CO2H (n ≥ 1, 1 ≤ kn + 1). It is concluded that this algorithm is a consequence of the unique mathematical properties of recurrence relations.  相似文献   

10.
The spread s(G) of a graph G is defined as s(G) = max i,j i − λ j |, where the maximum is taken over all pairs of eigenvalues of G. Let U(n,k) denote the set of all unicyclic graphs on n vertices with a maximum matching of cardinality k, and U *(n,k) the set of triangle-free graphs in U(n,k). In this paper, we determine the graphs with the largest and second largest spectral radius in U *(n,k), and the graph with the largest spread in U(n,k).   相似文献   

11.
On use of nitrous oxide as carrier gas the retention factors of the chromatographed compounds decrease linearly with increasing average column pressure. Other retention characteristics (relative retention, retention index) change linearly. This effect was demonstrated by using a capillary column coated with nonpolar polydimethylsiloxane phase SE-30. As shown for capillary GLC the linear correlation is valid for the same column:ki(G1,P1) = A ki(G2, P2) + B, where ki(G1, P1) and ki(G2,P2) are the retention factors of compound i at average column pressures P1 and P2 when using carrier gases G1 and G2, respectively; A and B are coefficients.  相似文献   

12.
The biodegradable aliphatic oligoesters polyglycolide (PGA), poly(L-lactide) (PLLA), and poly(?-caprolactone) (PCL) with similar number-average molecular weight Mn values but different linear alkyl end groups [CH3?[CH2?CH2]m?CH2?] were compared in terms of their physical properties, parameters such as melting temperature (Tm), crystallinity (xi), long period (L), and lamella thickness (D). They were analyzed by DSC and SAXS. The effect of a longer and nonpolar alkyl end group such as docosyl [CH3?[CH2?CH2]10?CH2?] on the long period (L) was more evident for PCL because it was the most nonpolar species in the family of oligoesters analyzed.  相似文献   

13.
The relative-rate method with gas-chromatographic product analysis was applied to study the kinetics of the reactions Br + CH3Br → CH2Br + HBr (1) and Br + CH2ClBr → CHClBr + HBr (2) The rate coefficient ratio of k 1/ k 2 = (1.6 ± 0.2) exp[(-15.2 ± 0.3) kJ mol-1/ RT] was determined in the temperature range of 353 - 410 K. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
The rate constant for the reaction Cl + CHClO → HCl + CClO was determined from relative decay rates of CHClO and CH3Cl inthe photolysis of mixtures containing Cl2 (~1 torr), CH3Cl (~1 torr), and O2 (~0.1 torr) in 700 torr N2. In such mixtures CHClO was generated in situ as a principal product prior to complete consumption of O2. The value of k(Cl + CHClO)/k(Cl + CH3Cl) = 1.6 ± 0.2(3σ) combined with the literature value of k(Cl + CH3Cl) = 4.9 × 10?13 cm3/molecule sec gives k(Cl + CHClO) = 7.8 × 10?13 cm3/molecule sec at 298 ± 2 K, in excellent agreement with a previous value of (7.9 ± 1.5) × 10?13 cm3/molecule sec determined by Sanhueza and Heicklen [J. Phys. Chem., 79 , 7 (1975)]. Thus this reaction is approximately 100 times slower than the corresponding reactions of aldehydes and alkanes with comparable C? H bond energies (≤95 kcal/mol).  相似文献   

15.
Interesting varieties of heterobimetallic mixed-ligand complexes [Zr{M(OPri) n }2 (L)] (where M = Al, n = 4, L = OC6H4CH = NCH2CH2O (1); M = Nb, n = 6, L = OC6H4CH = NCH2CH2O (2); M = Al, n = 4, L = OC10H6CH = NCH2CH2O (3); M = Nb, n = 6, L = OC10H6CH = NCH2CH2O (4)), [Zr{Al(OPri)4}2Cl(OAr)] (where Ar = C6H3Me2-2,5 (5); Ar = C6H2Me-4-Bu2-2,6 (6), [Zr{Al(OPri)4}2(OAr)2] (where Ar = C6H3Me2-2,5 (7); Ar = C6H2Me-4-Bu2-2,6 (8), [Zr{Al(OPri)4}3(OAr)] (where Ar = C6H3Me2-2,5 (9); Ar = C6H3Me2-2,6 (10), [ZrAl(OPri)7-n (ON=CMe2) n ] (where n = 4 (11); n = 7 (12), [ZrAl2(OPri)10-n (ON=CMe2) n ] (where n = 4 (13); n = 6 (14); n = 10 (15) and [Zr{Al(OPri)4}2{ON=CMe(R)} n Cl2–n] [where n = 1, R = Me (16); n = 2, R = Me (17); n = 1, R = Et (18); n = 2, R = Et (19)] have been prepared either by the salt elimination method or by alkoxide-ligand exchange. All of these heterobimetallic complexes have been characterized by elemental analyses, molecular weight measurements, and spectroscopic (I.r., 1H-, and 27Al- n.m.r.) studies.  相似文献   

16.
Pulsed laser photolysis, time-resolved laser-induced fluorescence experiments have been carried out on the reactions of CN radicals with CH4, C2H6, C2H4, C3H6, and C2H2. They have yielded rate constants for these five reactions at temperatures between 295 and 700 K. The data for the reactions with methane and ethane have been combined with other recent results and fitted to modified Arrhenius expressions, k(T) = A′(298) (T/298)n exp(?θ/T), yielding: for CH4, A′(298) = 7.0 × 10?13 cm3 molecule?1 s?1, n = 2.3, and θ = ?16 K; and for C2H6, A′(298) = 5.6 × 10?12 cm3 molecule?1 s?1, n = 1.8, and θ = ?500 K. The rate constants for the reactions with C2H4, C3H6, and C2H2 all decrease monotonically with temperature and have been fitted to expressions of the form, k(T) = k(298) (T/298)n with k(298) = 2.5 × 10?10 cm3 molecule?1 s?1, n = ?0.24 for CN + C2H4; k(298) = 3.4 × 10?10 cm3 molecule?1 s?1, n = ?0.19 for CN + C3H6; and k(298) = 2.9 × 10?10 cm3 molecule?1 s?1, n = ?0.53 for CN + C2H2. These reactions almost certainly proceed via addition-elimination yielding an unsaturated cyanide and an H-atom. Our kinetic results for reactions of CN are compared with those for reactions of the same hydrocarbons with other simple free radical species. © John Wiley & Sons, Inc.  相似文献   

17.
Deoxidation of copper melts by hydrogen has been investigated experimentally by top-blowing with argon-hydrogen plasma jets. The course of the deoxidation process has been described mathematically using kinetic laws. The overall divided course of the process can be examined in live partial steps, which are hydrogen transport within the gas phase, hydrogen transport within the melt, oxygen transport within the melt, reaction between hydrogen and oxygen, and H2O transport within the gas phase. Based on these five elementary processes, an equation for the velocity of deoxidation has been derived. The values of the rate of deoxidation resulting from this equation, in combination with the mass-transter coefficients valid for this process, have been compared to the experimental data. The results of this study verify those of former investigations on vaporization of elements out of copper melts. The mass-transfer coefficients are the same, when the local activity differences are used as the driving force for mass transport in a system. This means that the surface-renewal theory is valid, when mass-transfer coefficients are defined in this way. This is the case, at least, when metallic melts are subjected to top-blowing by plasma jets.Nomenclature a activity (a i =x i i ) - A c (m2) effective mass-transfer area - D(m) characteristic length, such as diameter - D r(m2/s) diffusion coefficient - H(Cu) oxygen dissolved in copper - k g (mol/m2s) mass-transfer coefficient in the gas phase [k g (i) mass-transfer coefficient for speciesi] - k N (mol/m2s) mass-transfer coefficient in the melt phase - K i = (x i /y i )eq equilibrium coefficient (distribution coefficient) - n N (mol) mole number of the melt phase - n G (mol) mole number of the gas phase - n i (mol/s) mole flow of speciesi - O(Cu) oxygen dissolved in copper - p(N) momentum flow - t(s) time - T (°C or K) temperature;T G : in the gas,T s : in the melt,T f : at the phase interface - x i (mol/mol) concentration in the melt - y i , (mol/mol) concentration in the gas phase - activity coefficient  相似文献   

18.
A theoretical analysis has been made of the graft polymerization process in terms of the quantitative interrelationship between the initiation rate Ri, the kp/kt1/ ratio of the monomer, the equilibrium solubility M of the monomer in the polymer, the polymer film thickness L, and the diffusivity D of the monomer in the polymer. It is shown how the values of these parameters in any grafting system interact to lead to diffusion-controlled graft polymerization. Whether graft polymerization is diffusion-free or diffusion-controlled depends on the values of Kp, d, kp/kp1/2, and L as gathered in the parameter A = [(Kp/kt1/2)Ri, D,/1/2] L/2. When the values of the various terms are such that A is less than 0.1 (i.e., D is large while Ri, kp, and L are small), the reaction is diffusion-free. When A is greater than 3 (i.e., D is small while Ri, kp, and L are large), the reaction is diffusion-controlled. The derived equations showing the relationship between kinetic and diffusional parameters are theoretically applicable to all grafting systems, i.e., for all monomer-polymer combinations under all conditions of reaction temperature, radiation intensity and polymer film thickness. The theoretical analysis has been verified for the rate and degree of polymerization for the radiation-induced graft polymerization of styrene to polyethylene.  相似文献   

19.
A convenient method is given for the semiquantitative determination of those changes ΔSi in internal coordinates, which describe the structure of the radical cation M+(Ψ) relative to the neutral molecule M in its electronic ground state. The changes ΔSi correspond to those associated with the relaxation process which follows the ionisation M + hvM+(Ψ) + e, M+ being in the electronic state Ψ. The method, based on the procedure originally developped by Smith & Warsop [3], uses the spacing and relative intensity of the vibrational fine-structure components of the bands in the photoelectron spectrum of M. From these data are calculated the changes ΔQk in normal coordinates, which are then transformed into the ΔSi by applying the L -matrix. The changes ΔRCX, ΔRCC and ΔRCH which describe the structure of the radical cations of the four monohaloacetylenes I(X) (X = F, Cl, Br, I) in their 2 II Ω(1) and 2 II Ω(2) states have been determined. It is shown that the results are in agreement with theoretical expectation and that they confirm the band assignement proposed in a previous communication [2].  相似文献   

20.
New monoanionic CNC pincer ligands, [N{SiMe2CH2(RIm)}2] (R = tBu, iPr, Ph) featuring three different N-heterocyclic carbenes and a disilylamido moiety is reported. Treatment of the lithium salt of [N{SiMe2CH2(RIm)}2] with CuIOTf afforded the corresponding copper complexes [N{SiMe2CH2(RIm)}2]Cu in 41–56 % yield. X-ray crystal structures of [N{SiMe2CH2(RIm)}2]Cu show that they are monomeric and feature three-coordinate, pseudo T-shaped copper(I) sites. The X-ray crystal structure of one of the precursor lithium complexes, [N{SiMe2CH2(tBuIm)}2]Li is also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号