首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photoisomerization behavior of three mono[(E)-3-(4-hydroxyphenyl)prop-2-enoyl]spermidines, 1, 2 , and 3 , and three bis[(E)-3-(4-hydroxyphenyl)prop-2-enoyl]spermidines, 4, 5 , and 6 , are investigated. The synthetic product (E)- 1 could be almost quantitatively (> 96%) converted into its isomer (Z)- 1 under UV light irradiation. In the cases of (E)- 2 and (E)- 3 , a mixture of (E)/(Z) ca. 1:2 was obtained, when the same conditions were applied. The comparison of their UV spectra provides the possible explanation for these different behaviors. Furthermore, it was noticed that the (Z) → (E) isomerization of the C?C bond took place during the purification by reverse-phase high-performance liquid chromatography (RP-HPLC), and the (E)/(Z)-mixture is thus inseparable. The same feature could be observed during the isolation of the (Z,Z)-N,N′-bis[3-(4-hydroxyphenyl)prop-2-enoyl]-spermidines, (Z,Z)- 4 , (Z,Z)- 5 , and (Z,Z)- 6 . Nevertheless, the fractions of (Z,Z)- 5 and (Z,Z)- 6 were in almost pure state collected, and their 1-NMR spectra are presented.  相似文献   

2.
█tl="American"█The synthesis of the three N,N′-di(4-coumaroyl)tetramines, i.e., of (E,E)-N-{3-[(2-aminoethyl)amino]propyl}-3,3′-bis(4-hydroxyphenyl)-N,N′-(ethane-1,2-diyl)bis[prop-2-enamide] ( 1a ), (E,E)-N-{4-[(2-aminoethyl)amino]butyl}-3,3′-bis(4-hydroxyphenyl)-N,N′-(ethane-1,2-diyl)bis[prop-2-enamide] ( 1b ), and (E,E)-N-{6-[(2-aminoethyl)amino]hexyl}-3,3′-bis(4-hydroxyphenyl)-N,N′-(ethane-1,2-diyl)bis[prop-2-enamide] ( 1c ), is described. It proceeds through stepwise construction of the symmetric polyamine backbone including protection and deprotection steps of the amino functions. Their behavior on TLC in comparison with that of 1,4-di(4-coumaroyl)spermine (=(E,E)-N-{4-[(3-aminopropyl)amino]butyl}-3,3′-bis(4-hydroxyphenyl)-N,N′-(propane-1,3-diyl)bis[prop-2-enamide]; 2 ) is discussed.  相似文献   

3.
The electrospray tandem mass spectra (ESI-MS/MS) of the three N,N′-bis[(E)-3-(4-hydroxyphenyl)prop-2-enoyl]spermidines 1–3 displayed the same fragment-ion signals. These isomers could not be differentiated by ESI-MS/MS, since their fragmentation patterns are similar. (E,E)-N-(3-[15N]Aminopropyl)-3,3′-bis(4- hydroxyphenyl)-N,N′-(butane-1,4-diyl)bis[prop-2-enamide] ([15N(1)])-( 1 ) was synthesized in order to get further information about the fragmentation mechanisms. The comparison of the ESI-MS/MS of 1 and [15N(1)]- 1 revealed a transamidation, the Zip reaction, under mass-spectral conditions of the [ 1 + H]+ ions. Because of this reaction, the three isomers 1–3 could not be distinguished.  相似文献   

4.
The Synthesis of p-Cumaroylspermidines The synthesis of three mono[(E)-3-(4-hydroxyphenyl)prop-2-enoyl]spermidines, 10, 20 , and 28 , three bis[(E)-3-(4-hydroxyphenyl)prop-2-enoyl]spermidines, 6, 16 , and 25 , and one tris[(E)-3-(4-hydroxyphenyl)prop-2-enoyl]-spermidine is described.  相似文献   

5.
Four new mononuclear complexes, [Ni(L1)(NCS)2] (1), [Ni(L2)(NCS)2] (2), [Co(L1)(N3)2]ClO4 (3), and [Co(L2)(N3)2]ClO4 (4), where L1 and L2 are N,N′-bis[(pyridin-2-yl)methylidene]butane-1,4-diamine and N,N′-bis[(pyridin-2-yl)benzylidene]butane-1,4-diamine, respectively, have been prepared. The syntheses have been achieved by reaction of the respective metal perchlorate with the tetradentate Schiff bases, L1 and L2, in presence of thiocyanate (for 1 and 2) or azide (for 3 and 4). The complexes have been characterized by microanalytical, spectroscopic, single crystal X-ray diffraction and other physicochemical studies. Structural studies reveal that 14 are distorted octahedral geometries. The antibacterial activity of all the complexes and their constituent Schiff bases have been tested against Gram-positive and Gram-negative bacteria.  相似文献   

6.
The three mono substituted N-[(E)-3-(4-hydroxyphenyl)prop-2-enoyl]spermidines 1–3 have been studied by positive-ion electrospray-ionization tandem mass spectrometry (ESI-MS/MS). Because of the neighboring-group participation, the MS/MS of [ 1 + H]+ and [ 2 + H]+ are essentially similar, while compound 3 can be easily distinguished from 1 and 2 because of the characteristic ions at m/z 218. However, with the source collision-induced dissociation (source-CID) MS/MS technique, the compounds 1 and 2 can be unambiguously distinguished by the signal of the pyrrolidinium ion (m/z 72) from their daughter ion (m/z 275). The source-CID MS/MS of the labeled compound N-(4-aminobutyl)-N-(3-aminopropyl)-N-[3-(4- hydroxyphenyl)prop-2-en[15N]amide] ([15N(4)]- 2 ) provide more information on the decomposition mechanisms and proved the occurrence of a partial transamidation reaction 2→1 during the measurement.  相似文献   

7.
Azimines. V. Investigation on the Stereoisomerism Around the N (2), N (3) Bond in 2, 3-Dialkyl-1-phthalimido-azimines 2, 3-(cis-1, 3-Cyclopentylene)-1-phthalimido-azimine ( 7 ) and isomerically pure (2 Z)- and (2 E)-2, 3-diisopropyl-1-phthalimido-azimine ( 9a and 9b ) were prepared by the addition of phthalimido-nitrene ( 1 ) to 2, 3-diazabicyclo [2.2.1]hept-2-ene ( 6 ) and to (E)- and (Z)-1, 1′-dimethylazoethane ( 8a and 8b ), respectively. Comparison of their UV. spectra with those of two stereoisomeric azimines of known configuration, namely (1 E, 2 Z)- and (1 Z, 2 E)-2, 3-dimethyl-1-phthalimido-azimine ( 5a and 5b ), reveals that 2, 3-dialkyl-1-phthalimido-azimines with (2 Z)-configuration are characterized by a shoulder at about 258 nm (? ≈? 14,000) and those with (2 E)-configuration by a maximum at 270–278 nm (? ≈? 10,000). The (2 E)-azimine 9b isomerizes under acid catalysis as well as thermally and photochemically into the more stable (2 Z)-isomer 9a . Under the last two conditions the isomerization is accompanied by a slower fragmentation with loss of nitrogen into N, N′-diisopropyl-N, N′-phthaloylhydrazine ( 4 , R = iso-C3H7). The same fragmentation was also observed on thermolysis and photolysis of the (2 Z)-isomer 9a . The kinetic parameters for the thermal isomerization of 9b (they fit first-order plots) and for the fragmentation of 9a and 9b were determined by 1H-NMR. spectroscopy in benzene, trichloromethane and acetonitrile. In the photolysis of 9a or 9b the fragmentation is accompanied by dissociation into the azo compounds 8a or 8b and the nitrene 1 , the latter being subject to trapping by cyclohexene. With the azimine 7 , an analogous thermal fragmentation was observed to give N, N′-(cis-1, 3-cyclo-pentylene)-N, N′-phthaloylhydrazine ( 15 ), but more energetic conditions were required than with 9 . Photolysis of 7 led exclusively to dissociation into the azo compound 6 and the nitrene 1 , perhaps because the fragmentation of 7 is prevented by ring strain.  相似文献   

8.
Two rhenium(I) complexes, [Re(CO)3Br(L n )] (n = 1, 2), (L1= N,N′-bis[1-(4-chlorophenyl)ethylidene]ethane-1,2-diamine and L2 = N,N′-bis[1-(4-nitrophenyl)ethylidene]ethane-1,2-diamine) have been synthesized and characterized by CHN analyses, 1H NMR, IR, and UV-Vis spectroscopy. The molecular structure of [Re(CO)3Br(L1)] is a distorted octahedron around rhenium with one Br, facial arrangement of three CO's, and one diimine. The UV-Vis spectra of the complexes have metal-to-ligand charge transfer bands increasing in wavelength when the L2 ligand is replaced by L1, in agreement with the oxidation potential of the complexes.  相似文献   

9.
The ring closure of N,N′-bis[2-(dialkoxy)ethyl]-p-xylene-α,α′-diamine dihydrochloride in fuming sulfuric acid has been investigated and the cyclization products have been identified as the linear pyrido[3,4-g]isoquinoline as well as the previously reported angular 3,8-phenanthroline.  相似文献   

10.
The synthesis of three novel pyrazole-containing complexing acids, N,N,N′,N′-{2, 6-bis[3-(aminomethyl)pyrazol-1-yl]-4-methoxypyridine}tetrakis(acetic acid)( 1 ), N,N,N′,N′-{2, 6-bis[3-(aminomethyl)pyrazol-1-yl]pyrazine}-tetrakis(acetic acid) ( 2 ), and N,N,N′,N′-{6, 6′-bis[3-(aminomethyl)pyrazol-1-yl]-2, 2′-bipyridine}tetrakis(acetic acid) ( 3 ) is described. Ligands 1–3 formed stable complexes with EuIII, TbIII, SmIII, and DyIII in H2O whose relative luminescence yields, triplet-state energies, and emission decay lifetimes were measured. The number of H2O molecules in the first coordination sphere of the lanthanide ion were also determined. Comparison of data from the EuIII and TbIII complexes of 1–3 and those of the parent trisheterocycle N,N,N′,N′-{2, 6-bis[3-(aminomethyl)pyrazol-l-yl]pyridine}tetrakis(acetic acid) showed that the modification of the pyridine ring for pyrazine or 2, 2′-bipyridine strongly modify the luminescence properties of the complexes. MeO Substitution at C(4) of 1 maintain the excellent properties described for the parent compound and give an additional functional group that will serve for attaching the label to biomolecules in bioaffinity applications.  相似文献   

11.
Reduction of (E)-3-aryl-2-(4-arylthiazol-2-yl)acrylonitriles with lithium aluminum hydride in dry ether afforded (Z)-1-amino-3-aryl-2-(thiazol-2-yl)prop-1-ene derivatives in 15 to 40% yields. The structure of (Z)-1-amino-3-(2-chlorophenyl)-2-[4-(4-methylphenyl)thiazol-2-yl]prop-1-ene was confirmed by X-ray diffraction analysis. Dedicated to Academician N. K. Kochetkov on the occasion of his 90th birthday. __________ Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 1301–1303, May, 2005.  相似文献   

12.
Cyclothiomethylation of the terminal amino groups in N-(2-aminoethyl)ethane-1,2-diamine, N,N′-bis(2-aminoethyl)ethane-1,2-diamine, and N,N′-bis(2-aminoethyl)ethane-1,1-diamine with formaldehyde and hydrogen sulfide gave the corresponding bis-1,3,5-dithiazinane derivatives. The reaction in aqueous butanol at 0°C was accompanied by intermolecular thiomethylation at the secondary amino groups with formation of previously unknown polyheterocyclic compounds containing nitrogen and sulfur atoms.  相似文献   

13.
The Mediterranean stolonifer Sarcodictyon roseum (= Rolandia rosea) (Cnidaria, Anthozoa, Alcyonaria, Stolonifera, Clavulariidae) is shown to contain two novel diterpenoidic alcohols esterified by (E)-N(1)-methyl-urocanic acid (= E)-3-(l-methyl-lH-imidazol-4-yl)acrylic acid). They are sarcodictyin A ( = (?)-(4R,4a,R, 7R,10S,11S,12aR,lZ,5E,8Z)-7,10-epoxy-3,4,4a,7,10,11,12,12a-octahydro-7-hydroxy-6-(methoxycarbonyl)-1,10-dimethyl-4-(1-methylethyl)benzocyclodecen-11-yl (E)-3-(1-methyl-lH-imidazol-4-yl)acrylate; (?)- 1 ) and sarco-dictyin B (the 6-(ethoxycarbonyl analogue; (?)- 2 ). The assignment of the structures is mainly based on 1D- and 2D-NMR data, as well as on chemical transformations of (?)- 1 , such as transesterification with MeONa/MeOH giving methyl (E)-N(1)-methylurocanate ( 3 ) and the free alcohol (+)- 4 and reduction with LiAlH4 followed by benzoylation giving dibenzoate 7. Absolute configurations are based on Horeau's method of esterification of (+)- 4 .  相似文献   

14.
Two new vic-dioxime ligands, (E,E)-N-{4-[(1,4-dioxaspiro[4.4]non-2-ylmethyl)amino]butyl}-N-hydroxy-2-(hydroxyimino)ethanimidamide (L1H2) and (E,E)-N-{4-[(1,4-dioxaspiro[4.5]dec-2-ylmethyl)amino]butyl}-N-hydroxy-2-(hydroxyimino)ethanimidamide (L2H2) containing two different heteroatoms (N,O) have been prepared from anti-chloroglyoxime, N-(1,4-dioxaspiro[4.4]non-2-ylmethyl)butane-1,4-diamine (3) and N-(1,4-dioxaspiro[4.5]dec-2-ylmethyl)butane-1,4-diamine (4). CoII, NiII and CuII complexes of the ligands have a metal:ligand ratio of 1:2 and the ligands coordinate through the two N atoms, as do most of the vic-dioximes. However, ZnII complexes of the ligands have a metal:ligand ratio of 1:1 and the ligands are coordinated only by the N, O atoms of the vic-dioximes. In the CoII complexes two water molecules, and in the ZnII complexes a chloride ion and a water molecule, are also coordinated to the metal ion. The structures of the compounds were determined by a combination of elemental analysis, magnetic moments, molar conductances, thermogravimetric analysis (t.g.a.) and spectroscopic (u.v.–vis., i.r., 1H- and 13C-n.m.r.) data.  相似文献   

15.
Azimines IV. Kinetics and Mechanism of the Thermal Stereoisomerization of 2,3-Diaryl-1-phthalimido-azimines1) Mixtures of (1E, 2Z)- and (1Z, 2E)-2-phenyl-1-phthalimido-3-p-tolyl-azimine ( 3a and 3b , resp.) and (1E, 2Z)- and (1Z, 2E)-3-phenyl-1-phthalimido-2-p-tolylazimine ( 4a and 4b , resp.) were obtained by the addition of oxidatively generated phthalimido-nitrene (6) to (E)- and (Z)-4-methyl-azobenzene ( 7a and 7b , resp.). Whereas complete separation of the 4 isomers 3a, 3b, 4a and 4b was not possible, partial separation by chromatography and crystallization led to 5 differently composed mixtures of azimine isomers. The spectroscopic properties of these mixtures (UV., 1H-NMR.) were used to determine the ratios of isomers in the mixtures, and served as a tool for the assignment of constitution and configuration to those isomers which were dominant in each of these mixtures, respectively. Investigation of the isomerization of the azimines 3a, 3b, 4a and 4b within the 5 mixtures at various concentrations by 1H-NMR.-spectroscopy at room temperature revealed that only stereoisomers are interconverted ( 3a ? 3b; 4a ? 4b) and that the (1E, 2Z) ? (1Z, 2E) stereoisomerization is a unimolecular reaction. These observations exclude an isomerization mechanism via an intermediate 1-phthalimido-triaziridine (2) or via dimerization of 1-phthalimido-azimines (1) , respectively. The 3-p-tolyl substituted stereoisomers 3a and 3b isomerized slightly slower than the 3-phenyl substituted ones 4a and 4b , an effect which is consistent with the assumption that the rate determining step of the interconversion of (1E, 2Z)- and (1Z, 2E)-1-phthalimido-azimines (1a ? 1b) is the stereoisomerization of the stereogenic center at N(2), N(3), either by inversion of N(3) or by rotation around the N(2), N(3) bond. The total isomerization process is assumed to occur via the thermodynamically less stable (1Z, 2Z)- and (1E, 2E)-isomers 1c and 1d , respectively, as intermediates in undetectably low concentrations which stay in rapidly established equilibria with the observed, thermodynamically more stable (1E, 2Z)- and (1Z, 2E)-isomers 1a and 1b , respectively. At higher temperatures, the azimines 3 and 4 are transformed into N-phenyl-N,N′-phthaloyl-N′-p-tolyl-hydrazine (8) with loss of nitrogen.  相似文献   

16.
New trans-disubstituted macrocyclic ligands, 1,8-[N,N-bis(3-formyl-12-hydroxy-5-methyl)benzyl]-5,12-dioxo-1,4,8,11-tetraazacyclotetradecane (L1), 1,8-[N,N-bis(3-formyl-12-hydroxy-5-bromo)benzyl]-5,12-dioxo-1,4,8,11-tetraazacyclotetradecane (L2), N,N-bis[1,8-dibenzoyl]-5,12-dioxo-1,4,8,11-tetraazacyclotetradecane (L3), N,N-bis[1,8-(2-nitrobenzoyl)]-5,12-dioxo-1,4,8,11-tetraazacyclotetradecane (L4), and N,N-bis[1,8-(4-nitrobenzoyl)]-5,12-dioxo-1,4,8,11-tetraazacyclotetradecane (L5) were synthesized. The ligands were characterized by elemental analysis, FT IR, 1H NMR and mass spectrometry studies. The crystal structure of L1 is also reported. The copper(II) and nickel(II) complexes of these ligands were prepared and characterized by elemental analysis, FT IR, UV-Vis and mass spectral studies. The cyclic voltammogram of the complexes of ligand L1-3 show one-electron quasi-reversible reduction wave in the region −0.65 to −1.13 V, whereas that of L4 and L5 show two quasi-reversible reduction peaks. Nickel(II) complexes show one electron quasi-reversible oxidation wave at a positive potential in the range +0.95 to +1.06 V. The ESR spectra of the mononuclear copper(II) complexes show four lines, characteristic of square-planar geometry with nuclear hyperfine spin 3/2. All copper(II) complexes show a normal room temperature magnetic moment value μeff 1.70-1.73 BM which is close to the spin only value of 1.73 BM. Kinetic studies on the oxidation of pyrocatechol to o-quinone using the copper(II) complexes as catalysts and hydrolysis of 4-nitrophenylphosphate using the copper(II) and nickel(II) complexes as catalysts were carried out. The ligands and their complexes were also screened for antimicrobial activity against Gram-positive, Gram-negative bacteria and human pathogenic fungi.  相似文献   

17.
Three new mononuclear Schiff-base complexes, namely [Mn(L)Cl] (1), [Ni(L)] (2), and [Cu(L)] (3), where L?=?anion of [N,N′-bis(2-hydroxybenzophenylidene)]propane-1,2-diamine, have been synthesized by reacting equimolar amounts of the respective metal chloride and the tetradentate Schiff base, H2L, in methanol. The complexes have been characterized by microanalytical, spectroscopic, single-crystal X-ray diffraction, and other physicochemical studies. Structural studies reveal that 1 adopts a distorted square-pyramidal geometry whereas 2 and 3 are isotypic with distorted square-planar geometries. The antibacterial activities of 13 along with their Schiff base have been tested against some Gram(+) and Gram(?) bacteria.  相似文献   

18.
Three-component condensation of methyl {4-[(2E)-3-(4-methoxyphenyl)prop-2-enoyl]phenyl}- carbamate with ninhydrin and L-proline in methanol–water (10: 1) afforded methyl {4-[1,3-dioxo-1′- (4-methoxyphenyl)-1,1′,2′,3,5′,6′,7′,7a′-octahydrospiro[indene-2,3′-pyrrolizin]-2′-ylcarbonyl]phenyl}carbamate. Heating of methyl {4-[(2E)-3-(4-methoxyphenyl)prop-2-enoyl]phenyl}carbamate with isatin and benzylamine in methanol gave methyl {4-[4′-(4-methoxyphenyl)-2-oxo-5′-phenyl-1,2-dihydrospiro[indole-3,2′-pyrrolidin]-3′-ylcarbonyl]phenyl}carbamate. The condensation of methyl {4-[(2E)-3-(4-methoxyphenyl)prop-2- enoyl]phenyl}carbamate with sarcosine and 11H-indeno[1,2-b]quinoxalin-11-one generated in situ from ninhydrin and o-phenylenediamine in boiling ethanol led to the formation of methyl {4-[4′-(4-methoxyphenyl)-1′-methyl-11,11a-dihydro-5aH-spiro[benzo[b]phenazine-6,2′-pyrrolidin]-3′-ylcarbonyl]phenyl}carbamate.  相似文献   

19.
Two ligands, N,N′-bis[1-(4-chlorophenyl)ethylidene]ethane-1,2-diamine (L1 ) and N,N′-bis- [1-(4-nitrophenyl)ethylidene]ethane-1,2-diamine (L2 ) and their corresponding copper(I) complexes, [Cu(L 1)2]ClO4 (1) and [Cu(L 2)2]ClO4 (2), have been synthesized and characterized by CHN analyses, 1H-NMR, IR, and UV–Vis spectroscopy. The crystal structures of L1 and [Cu(L 1)2]ClO4 (1) were determined from single crystal X-ray diffraction. L1 lies across a crystallographic inversion center and the C=N is approximately coplanar with the benzene ring and adopts E configuration. The coordination polyhedron about copper(I) in 1 is best described as a distorted tetrahedron. Quasireversible redox behavior is observed for the complexes.  相似文献   

20.
A new skeleton bisabolane-type sesquiterpene curcuminoid,bisabocurcumin(1),along with 5 known compounds,curcumin(2), demethoxycurcumin(3),bidemethoxycurcumin(4),(1E,4E)-1,5-bis(4-hydroxy-3-methoxyphenyl)-penta-1,4-dien-3-one(5),and (1E,4E)-1-(4-hydroxy-3-methoxyphenyl)-5-(4-hydroxy phenyl-)-penta-1,4-dien-3-one(6)were isolated from the rhizomes of Curcuma longa L.Their structures were determined on the basis of spectroscopic analysis.Bisabocurcumin(1) is firstly obtained from nature with a new skeleton combined by a bisabolane-type sesquiterpene and a 1,7-diphenylheptanoid through a C-C bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号