首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The magnetization of a nonuniformly stressed FeBO3 crystal along any of the two specific directions in the basal plane (the easy plane) at a temperature of T < 140 K in a magnetic field exceeding the threshold value H 0 is found to lead to a transition of the crystal from the uniform magnetic state to the spatially modulated one. The modulated magnetic phase arising under these conditions exists in a certain temperature-dependent field range H 0HH c and is representable in the form of a static spin wave that is linearly polarized in the easy plane of the crystal and has a wave vector k oriented at an angle of ~30° to the magnetization axis. The field, temperature, and orientation dependences of k are investigated. A physical mechanism is proposed to explain the modulation of the magnetic order parameter of the crystal under study. The results obtained are discussed in terms of the magnetic ripple theory.  相似文献   

2.
We study planar ferromagnetic spin-chain systems with weak antiferromagnetic inter-chain interaction and dipole-dipole interaction. The ground state depends sensitively on the relative strengths of antiferromagnetic exchange and dipole energies κ = J′a 2 c/(g L μ B )2. For increasing values of κ, the ground state changes from a ferromagnetic via a collinear antiferromagnetic and an incommensurate phase to a 120° structure for very large antiferromagnetic energy. Investigation of the magnetic phase diagram of the collinear phase, as realized in CsNiF3, shows that the structure of the spin order depends sensitivly on the direction of the magnetic field in the hexagonal plane. For certain angular domains of the field incommensurate phases appear which are seperated by commensurate phases. When rotating the field, the wave vector characterizing the structure changes continously in the incommensurate phase, whereas in the commensurate phase the wave vector is locked to a fixed value describing a two-sublattice structure. This is a result of the competition between the exchange and the dipole-dipole interaction.  相似文献   

3.
A complex study of the magnetic, electric, magnetoelectric, and magnetoelastic properties of GdMnO3 single crystals has been performed in the low-temperature region in strong pulsed magnetic fields up to 200 kOe. An anomaly of the dielectric constant along the a axis of a crystal has been found at 20 K, where a transition from an incommensurate modulated phase to a canted antiferromagnetic phase, as well as electric polarization along the a and b axes of the crystal induced by the magnetic field Hb (Hcr ~ 40 kOe), is observed. Upon cooling the crystal in an electric field, the magnetic-field-induced electric polarization changes its sign depending on the sign of the electric field. The occurrence of the electric polarization is accompanied by anisotropic magnetostriction, which points to a correlation between the magnetoelectric and magnetoelastic properties. Based on these results, it has been stated that GdMnO3 belongs to a new family of magnetoelectric materials with the perovskite structure.  相似文献   

4.
It is shown, that in hexagonal antiferromagnets, the form of incommensurate structure depends on the ratio of dipole-dipole energy to the anisotropic interaction energy at fixed values of exchange constants. In CsCuCl3-type compounds, in which the spiral magnetic structure realizes along the c-axis and 120° structure - in the c-plane, there appears a new sinusoidal phase in the external field H>Hc, where Hc is a critical field. Thus, in result, two modulated structures form at intermediate temperatures.  相似文献   

5.
Transport properties of a magnetic barrier in a GaxAl1−xAs based two-dimensional hole gas are reported. A ferromagnetic cobalt film, separated by an AlOx layer from the semiconductor in order to prevent leakage currents, is magnetized in-plane, such that the fringe field generates a localized perpendicular magnetic field acting as a magnetic barrier. The resistance as a function of the in-plane magnetic field shows a characteristic minimum at the coercive field of the ferromagnetic film. Semiclassical simulations based on the Landauer–Büttiker formalism show good agreement with the experiment.  相似文献   

6.
The spectrum of magnetoelastic waves in a periodic structure of alternating ferromagnetic and nonmagnetic layers was studied. In the case of ferromagnetic layers with easy magnetization axes parallel to the layer surfaces, an orientational phase transition induced by an external tangential magnetic field He was considered. The formation of an inhomogeneous phase with a spatially modulated order parameter, which is caused by the magnetization being coupled through magnetostriction to lattice strains near the interfaces separating the magnetoelastic from elastic media, is predicted. It is shown that at a certain critical field in excess of the orientational phase transition field in the system without magnetostriction, a magnetoelastic wave propagating in a direction parallel to the in-plane magnetization vector M becomes unstable at finite values of the wave vector and condenses into a magnetostriction domain structure. A phase diagram in the (L, T, He) coordinates is constructed, and the regions of existence of thermodynamically equilibrium collinear, canted, and domain phases are established (L and T are the thicknesses of the ferromagnetic and nonmagnetic layers, respectively).  相似文献   

7.
Switching behaviors of magnetic vortex cores under external magnetic field in submicron circular permalloy disks have been systematically studied by using micromagnetic simulations. Simulation results show that the vortex core is stable in out-of-plane field even when it is located at the edge of the disk. The out-of-plane switching field Hsw is strongly dependent on the thickness of the disk. The core polarity and the vortex chirality can be modulated simultaneously on purpose by using a tilted field far smaller than the out-of-plane switching field Hsw. Moreover, it is found that the core polarities in asymmetric disks do not follow the direction of the z projection of the external saturation field.  相似文献   

8.
The effect of magnetic inhomogeneity on magnetic, magnetocaloric, and transport properties of the colossal magnetoresistance manganites with first order ferromagnetic-to-paramagnetic phase transition is studied. The experiments were performed on the single-crystalline samples of La0.6Pr0.1Ca0.3MnO3. The inhomogeneity is described by the Curie temperature distribution function, which is found from the magnetization data. The temperature dependence of the magnetic field induced change in the entropy is shown to be determined by the distribution function and the shift of the transition temperature in a magnetic field. Similarly, magnetoresistance in the transition region is determined by the resistivity at H=0 and the shift of the transition temperature. The maximum entropy change as well as maximum magnetoresistance can be achieved in the magnetic field of order δTC/BM where δTC is the transition width and BM is the rate of change of the Curie temperature with magnetic field.Our approach to analysis of the effects of inhomogeneity is general and therefore can be used for all compounds with the first order magnetic phase transition.  相似文献   

9.
Mean-field theory applied to superconductors with one-dimensional band in the presence of both the homogeneous magnetic field H0 and the antiferromagnetic field HQ, the second-order phase transition temperature is investigated for the arbitrary angle θ between H0 and HQ. It is found that the remarkable superconducting region in the case of θ = 0 is retained only for small θ and that the spatially dependent order parameter coexists with the spatially uniform order parameter except for θ = τ/2.  相似文献   

10.
As predicted by Haldane, spin, S=1 one-dimensional (1D) Heisenberg antiferromagnet (HAF) has an energy gap between the singlet ground state and first excited triplet. On application of magnetic field, the triplet state Zeeman splits and the energy of one of the triplet state becomes zero at a critical field, Hc. Above Hc the system recovers magnetism. Then, we expect that a quasi-1D HAF will show a magnetic long-range ordering (LRO) at low temperatures due to the inter-chain coupling. This field-induced LRO has not been observed before due to complication of the crystal structure in the materials studied so far and/or technical difficulty.From a heat capacity measurement on a single crystal of an S=1 quasi-Q1D HAF, Ni(C5H14N2)2N3(PF6), we found an anomaly at a temperature in finite fields indicating a field-induced phase transition. A magnetic LRO is confirmed by a neutron diffraction measurement on the same sample. The temperature versus magnetic field phase diagram of this compound is constructed and discussed.  相似文献   

11.
We have discovered a new magnetic phase transition between free-excitons and electron-hole drops in high purity Ge near the critical point of the liquid-gas phase diagram. The critical magnetic field is found to be Hc ≈ 0.4 T. For H?Hc the electron-hole drops are stable to higher temperatures by about 1 K with respect to zero field.  相似文献   

12.
A theory of generation linewidth of a spin-torque oscillator (STO) based on an in-plane-magnetized nano-pillar with an anisotropic “free” magnetic layer has been developed. It is predicted that by choosing the direction of the in-plane bias magnetic field H0 along the “hard” anisotropy axis of the STO “free” layer and the magnitude of this field to be four times larger than the anisotropy field HA (H0=4HA) it would be possible to compensate the nonlinear phase noise and to achieve the minimum value of the generation linewidth, characteristic for an auto-oscillator without a nonlinear frequency shift.  相似文献   

13.
We present measurements of the superconducting upper critical field Hc2(T) and the magnetic phase diagram of the superconductor ErNi2B2C made with a scanning tunneling microscope (STM). The magnetic field was applied in the basal plane of the tetragonal crystal structure. We have found large gapless regions in the superconducting phase diagram of ErNi2B2C, extending between different magnetic transitions. A close correlation between magnetic transitions and Hc2(T) is found, showing that superconductivity is strongly linked to magnetism.  相似文献   

14.
A new feature (a peak) is found in the magnetic field dependence of the longitudinal ultrasound attenuation in UPt3. Below the peak, the attenuation varies linearly with field. Above the peak Δα = α(Hc2)-α(H) ∼(Hc2-H)2. The peak, at the change over from linear to parabolic behavior, may correspond to a phase transition in the vortex lattice.  相似文献   

15.
A theory of thermodynamic properties of a spin density wave (SDW) in a quasi-two-dimensional system (with a preset impurity concentration x) is constructed. We choose an anisotropic dispersion relation for the electron energy and assume that external magnetic field H has an arbitrary direction relative to magnetic moment M Q . The system of equations defining order parameters M Q z , M Q σ , M z , and M σ is constructed and transformed with allowance for the Umklapp processes. Special cases when HM Q and HM Q (H Z H σ = 0) are considered in detail as well as cases of weak fields H of arbitrary direction. The condition for the transition of the system to the commensurate and incommensurate states of the SDW is analyzed. The concentration dependence of magnetic transition temperature T M is calculated, and the components of the order parameter for the incommensurate phase are determined. The phase diagram (T,~x) is constructed. The effect of the magnetic field on magnetic transition temperature T M is analyzed for H Z H σ = 0, and longitudinal magnetic susceptibility χ‖ is calculated; this quantity demonstrates the temperature dependence corresponding to a system with a gap for x < x c and to a gapless state for x > x c . In the immediate vicinity of the critical impurity concentration (xx c ), the temperature dependence of the magnetic susceptibility acquires a local maximum. The effect of anisotropy of the electron energy spectrum on the investigated physical quantities is also analyzed.  相似文献   

16.
The phase structure of the QCD vacuum in a magnetic field H is investigated at low temperatures T. The free energy of the hadronic phase in a constant homogeneous magnetic field is calculated in the one-loop approximation of chiral perturbation theory. The quark and the gluon condensate are found as functions of temperature and the field strength. It is shown that the order parameter $\left\langle {\bar qq} \right\rangle $ for the chiral phase transition remains constant when the temperature T and the magnetic field H change in such a way that H=const×T 2.  相似文献   

17.
Commensurability effects have been theoretically studied in a hybrid system consisting of a Josephson junction located in a nonuniform field induced by an array of magnetic particles. A periodic phase-difference distribution in the junction that is caused by the formation of a regular lattice of Abrikosov vortices generated by the magnetic field of the particles in superconducting electrodes is calculated. The dependence of the critical current through the junction I c on the applied magnetic field H is shown to differ strongly from the conventional Fraunhofer diffraction pattern because of the periodic modulation of the Josephson phase difference created by the vortices. More specifically, the I c(H) pattern contains additional resonance peaks, whose positions and heights depend on the parameters and magnetic state of the particles in the array. These specific features of the I c(H) dependence are observed when the period of the Josephson current modulation by the field of the magnetic particles and the characteristic scale of the change in the phase difference by the applied magnetic field are commensurable. The conditions that determine the positions of the commensurability peaks are obtained, and they are found to agree well with experimental results.  相似文献   

18.
A dynamic probing of magnetic liquids is performed experimentally, using a static magnetic field modulated by another smaller field, normal and alternating. The optical magneto-birefringence under these crossed magnetic fields is recorded as a function of the frequency for different field intensities and different sizes of the magnetic nanoparticles. A general reduced behavior is found for the in-phase and the out-of-phase optical response which is well-described by a simple mechanical model. Depending on the value H ani of the anisotropy field of the nanoparticles, we can distinguish two different high magnetic field regimes: - a rigid dipole regime (large anisotropy energy with respect to k B T) for cobalt ferrite nanoparticles with a relaxation time inversely proportional to the field intensity H C(H C < H ani), - a soft dipole regime (anisotropy energy of the order of k B T) for maghemite nanoparticles with a relaxation time independent of the field intensity H C(H C > H ani). Received 5 June 2000 and Received in final form 8 January 2001  相似文献   

19.
Magnetic susceptibility of the magnetic fluid with CoFe2O4 particles was measured in the low-frequency range in order to determine mean values of the magnetic grain size and the saturation magnetisation. The volume concentration of the solid phase (CoFe2O4) was also found. Results of the calorimetric measurements, in the range from 70 kHz to 1.7 MHz, confirmed the suitability of use of the medium studied in magnetic fluid hyperthermia, especially in the frequency region 600–800 kHz. The H2–law-type dependence of the specific absorption rate on the square amplitude of the magnetic field testified to the presence of superparamagnetic particles in the magnetic fluid. The minimum magnetic field intensity needed for successful hyperthermal treatment was experimentally determined.  相似文献   

20.
We study the magnetic superconductors for which the second order phase transition to the ferro-magnetic state would take place at the temperature θc ? Tc1 if the superconductivity was absent. In this case the inhomogeneous magnetic structure of domain-like type (DS phase) appears in superconductors below TM ≈ θc. The effect of the magnetic field H on DS phase is analysed and the region of DS phade existence in the plane (H, T) is found. The new peaks 2nQ (n is integer) should appear in the neutron scattering in the presence of the magnetic field. The wavevector Q of magnetic structure decreases with the growth of magnetic field or supercurrent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号