首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A concise synthesis of the mosquito oviposition attractant pheromone, (-)-(5R, 6S)- and(+)-(5S 6R)-6-acetoxy hexadecanolide from L-glutamic acid is described. The key steps are theinversion of the configuration at C-4 of 7, and the formation of δ-lactone from the γ-lactonethrough ring enlargement.  相似文献   

2.
The interpretation of 1H‐NMR chemical shifts, coupling constants, and coefficients of temperature dependence (δ(OH), J(H,OH), and Δδ(OH)/ΔT values) evidences that, in (D6)DMSO solution, the signal of an OH group involved as donor in an intramolecular H‐bond to a hydroxy or alkoxy group is shifted upfield, whereas the signal of an OH group acting as acceptor of an intramolecular H‐bond and as donor in an intermolecular H‐bond to (D6)DMSO is shifted downfield. The relative strength of the intramolecular H‐bond depends on co‐operativity and on the acidity of OH groups. The acidity of OH groups is enhanced when they are in an antiparallel orientation to a C−O bond. A comparison of the 1H‐NMR spectra of alcohols in CDCl3 and (D6)DMSO allows discrimination between weak and strong intramolecular H‐bonds. Consideration of IR spectra (CHCl3 or CH2Cl2) shows that the rule according to which the downfield shift of δ(OH) for H‐bonded alcohols in CDCl3 parallels the strength of the H‐bond is valid only for alcohols forming strong intramolecular H‐bonds. The combined analysis of J(H,OH) and δ(OH) values is illustrated by the interpretation of the spectra of the epoxyalcohols 14 and 15 (Fig. 3). H‐Bonding of hexopyranoses, hexulopyranoses, alkyl hexopyranosides, alkyl 4,6‐O‐benzylidenehexopyranosides, levoglucosans, and inositols in (D6)DMSO was investigated. Fully solvated non‐anomeric equatorial OH groups lacking a vicinal axial OR group (R=H or alkyl, or (alkoxy)alkyl) show characteristic J(H,OH) values of 4.5 – 5.5 Hz and fully solvated non‐anomeric axial OH groups lacking an axial OR group in β‐position are characterized by J(H,OH) values of 4.2 – 4.4 Hz (Figs. 4 – 6). Non‐anomeric equatorial OH groups vicinal to an axial OR group are involved in a partial intramolecular H‐bond (J(H,OH)=5.4 – 7.4 Hz), whereas non‐anomeric equatorial OH groups vicinal to two axial OR form partial bifurcated H‐bonds (J(H,OH)=5.8 – 9.5 Hz). Non‐anomeric axial OH groups form partial intramolecular H‐bonds to a cis‐1.3‐diaxial alkoxy group (as in 29 and 41 : J(H,OH)=4.8 – 5.0 Hz). The persistence of such a H‐bond is enhanced when there is an additional H‐bond acceptor, such as the ring O‐atom ( 43 – 47 : J(H,OH)=5.6 – 7.6 Hz; 32 and 33 : 10.5 – 11.3 Hz). The (partial) intramolecular H‐bonds lead to an upfield shift (relative to the signal of a fully solvated OH in a similar surrounding) for the signal of the H‐donor. The shift may also be related to the signal of the fully solvated, equatorial HO−C(2), HO−C(3), and HO−C(4) of β‐D ‐glucopyranose ( 16 : 4.81 ppm) by using the following increments: −0.3 ppm for an axial OH group, 0.2 – 0.25 ppm for replacing a vicinal OH by an OR group, ca. 0.1 ppm for replacing another OH by an OR group, 0.2 ppm for an antiperiplanar C−O bond, −0.3 ppm if a vicinal OH group is (partially) H‐bonded to another OR group, and −0.4 to −0.6 for both OH groups of a vicinal diol moiety involved in (partial) divergent H‐bonds. Flip‐flop H‐bonds are observed between the diaxial HO−C(2) and HO−C(4) of the inositol 40 (J(H,OH)=6.4 Hz, δ(OH)=5.45 ppm) and levoglucosan ( 42 ; J(H,OH)=6.7 – 7.1 Hz, δ(OH)=4.76 – 4.83 ppm; bifurcated H‐bond); the former is completely persistent and the latter to ca. 40%. A persistent, unidirectional H‐bond C(1)−OH⋅⋅⋅O−C(10) is present in ginkgolide B and C, as evidenced by strongly different δ(OH) and Δδ(OH)/ΔT values for HO−C(1) and HO−C(10) (Fig. 9). In the absence of this H‐bond, HO−C(1) of 52 resonates 1.1 – 1.2 ppm downfield, while HO−C(10) of ginkgolide A and of 48 – 50 resonates 0.5 – 0.9 ppm upfield.  相似文献   

3.
Partial labeling by deuterium may be quantified through simple integrations of those 1H (200 or 400 MHz ) and 13C (100.6 MHz ) NMR resonances that are split into pairs by chemical shifts nΔ=δ(deuterated)?δ(nondeuterated) as induced by deuterium across n>2 chemical bonds. The relative intensities of the two components of a pair are shown to be influenced to practically equal degrees by relaxation effects, so that a deuterium fraction may be determined from 1H and 13C integral pairs at more remote molecular positions under the routine conditions of fast accumulative spectral acquisition.  相似文献   

4.
A concise and efficient total synthesis of arizonins B1 and C1 is reported. A key building block alkyne is synthesized from d-glucono-δ-lactone and used in the Dötz benzannulation reaction to construct the naphthalene unit. An oxa-Pictet–Spengler reaction gave the pyran ring while an H2SO4 mediated isomerization set the correct stereochemistry of the target molecules. Alternatively, a direct anti-pyran stereochemistry was prepared in a TFA solvent. The synthesis is competitive to previous reports and marks the first enantioselective synthesis of arizonin B1.  相似文献   

5.
Palladium and platinum complexes containing a sulfur‐functionalised N‐heterocyclic carbene (S‐NHC) chelate ligand have been synthesised. The absolute conformations of these novel organometallic S‐NHC chelates were determined by X‐ray structural analyses and solution‐phase 2D 1H–1H ROESY NMR spectroscopy. The structural studies revealed that the phenyl substituents on the stereogenic carbon atoms invariably take up the axial positions on the Pd‐C‐S coordination plane to afford a skewed five‐membered ring structure. All of the chiral complexes are structurally rigid and stereochemically locked in a chiral ring conformation that is either (Rs,S,R)‐λ or (Ss,R,R)‐δ in both the solid state and solution.  相似文献   

6.
We report chiral RhIII cyclopentadienyl-catalyzed enantioselective synthesis of lactams and isochromenes through oxidative [4+1] and [5+1] annulation, respectively, between arenes and 1,3-enynes. The reaction proceeds through a C−H activation, alkenyl-to-allyl rearrangement, and a nucleophilic cyclization cascade. The mechanisms of the [4+1] annulations were elucidated by a combination of experimental and computational methods. DFT studies indicated that, following the C−H activation and alkyne insertion, a RhIII alkenyl intermediate undergoes δ-hydrogen elimination of the allylic C−H via a six-membered ring transition state to produce a RhIII enallene hydride intermediate. Subsequent hydride insertion and allyl rearrangement affords several rhodium(III) allyl intermediates, and a rare RhIII η4 ene-allyl species with π-agostic interaction undergoes SN2′-type external attack by the nitrogen nucleophile, instead of C−N reductive elimination, as the stereodetermining step.  相似文献   

7.
A short and simple synthetic route to polyhydroxylated piperidines and pyrrolidines were described with D-glucurono-δ-lactone as chiral educt. Key reaction steps included selective cleavage of terminal isopropylidene group of compound 12 with Dowex 50W-X8 resin (H+ form), regioselective ring opening of epoxide 16 and intramolecular nucleophilic amination of compound 14 and 18 .  相似文献   

8.
刘骥军  徐蕴  田禾 《有机化学》2007,27(4):541-544
通过葫芦[6]脲(CB[6])与两个质子化的1,4-丁二胺在水溶液中于室温下进行超分子自组装, 得到一种新型的准轮烷. 通过1H NMR, 质谱和1H ROESY NMR对其结构进行了表征, 证实CB[6]位于质子化1,4-丁二胺的脂肪链上, 通过非共价键与1,4-丁二胺结合, 并且主体(CB[6])与客体的结合的物质的量之比为2∶1.  相似文献   

9.
In this disclosure, we summarize the preliminary metabolic profiling of the PI3Kδ inhibitor CDZ173 (leniolisib, 1a ) obtained from incubations of the unlabeled compound and the synthesis of its metabolically stable tritium isotopologue 1b used for metabolite structure confirmation. Access to 1b was achieved when a halogenated precursor was subject to Hal/3H‐exchange. Hence, [3H]CDZ173 with specific activity 630 GBq/mmol, HPLC‐RA 97% and ee = 99.2% was obtained. Synthetic key to the precursor was using a bis‐halo‐pyridine in a Pd‐catalyzed mono‐amination of the tetrahydropyrido‐pyrimidine core. Stereochemistry of the synthetic precursors were confirmed by X‐ray analysis of the unlabeled bis‐halo‐pyridines and chiral HPLC of the tritiated material. The correct position of tritium label in the target, was confirmed by 3H‐NMR difference spectroscopy. Besides, we report on the validation of the radiotracer as a tool for pre‐clinical ADME in incubations with hepatocytes. Based on this data, we present a quantitative metabolite profile of leniolisib which was confirmed by independently synthesized metabolite references. The conformation of CDZ173 was investigated by NMR suggesting two different amide backbones each with specific pyrrolidine puckerings.  相似文献   

10.
The 1H NMR parameters for a number of cis-arylmethyl oxiranes are reported and discussed in comparison with those of trans derivatives and styrene oxides substituted in the phenyl ring. While the macroscopic behaviour of the results is in agreement with a perturbative mechanism through the oxirane ring that is mainly electrostatic in character, a small contribution due to conjugative interaction is not excluded. It seems likely that the effect of substituents in the phenyl ring is mainly transmitted through bonds rather than through space, and that the different polarisation of the C? H bonds in the oxirane ring is mainly responsible for the different behaviour of the protons in cis- and trans- arylmethyl oxiranes towards the effect of substituents.  相似文献   

11.
The crystal structures of three compounds involving aminopyrimidine derivatives are reported, namely, 5-fluorocytosinium sulfanilate–5-fluorocytosine–4-azaniumylbenzene-1-sulfonate (1/1/1), C4H5FN3O+·C6H6NO3S·C4H4FN3O·C6H7NO3S, I , 5-fluorocytosine–indole-3-propionic acid (1/1), C4H4FN3O·C11H11NO2, II , and 2,4,6-triaminopyrimidinium 3-nitrobenzoate, C4H8N5+·C7H4NO4, III , which have been synthesized and characterized by single-crystal X-ray diffraction. In I , there are two 5-fluorocytosine (5FC) molecules (5FC-A and 5FC-B) in the asymmetric unit, with one of the protons disordered between them. 5FC-A and 5FC-B are linked by triple hydrogen bonds, generating two fused rings [two R22(8) ring motifs]. The 5FC-A molecules form a self-complementary base pair [R22(8) ring motif] via a pair of N—H…O hydrogen bonds and the 5FC-B molecules form a similar complementary base pair [R22(8) ring motif]. The combination of these two types of pairing generates a supramolecular ribbon. The 5FC molecules are further hydrogen bonded to the sulfanilate anions and sulfanilic acid molecules via N—H…O hydrogen bonds, generating R44(22) and R66(36) ring motifs. In cocrystal II , two types of base pairs (homosynthons) are observed via a pair of N—H…O/N—H…N hydrogen bonds, generating R22(8) ring motifs. The first type of base pair is formed by the interaction of an N—H group and the carbonyl O atom of 5FC molecules through a couple of N—H…O hydrogen bonds. Another type of base pair is formed via the amino group and a pyrimidine ring N atom of the 5FC molecules through a pair of N—H…N hydrogen bonds. The base pairs (via N—H…N hydrogen bonds) are further bridged by the carboxyl OH group of indole-3-propionic acid and the O atom of 5FC through O—H…O hydrogen bonds on either side of the R22(8) motif. This leads to a DDAA array. In salt III , one of the N atoms of the pyrimidine ring is protonated and interacts with the carboxylate group of the anion through N—H…O hydrogen bonds, leading to the primary ring motif R22(8). Furthermore, the 2,4,6-triaminopyrimidinium (TAP) cations form base pairs [R22(8) homosynthon] via N—H…N hydrogen bonds. A carboxylate O atom of the 3-nitrobenzoate anion bridges two of the amino groups on either side of the paired TAP cations to form another ring [R32(8)]. This leads to the generation of a quadruple DADA array. The crystal structures are further stabilized by π–π stacking ( I and III ), C—H…π ( I and II ), C—F…π ( I ) and C—O…π ( II ) interactions.  相似文献   

12.
The title compounds, C8H11NO, (I), and 2C8H12NO+·C4H4O42−, (II), both crystallize in the monoclinic space group P21/c. In the crystal structure of (I), intermolecular O—H...N hydrogen bonds combine the molecules into polymeric chains extending along the c axis. The chains are linked by C—H...π interactions between the methylene H atoms and the pyridine rings into polymeric layers parallel to the ac plane. In the crystal structure of (II), the succinate anion lies on an inversion centre. Its carboxylate groups interact with the 2‐ethyl‐3‐hydroxy‐6‐methylpyridinium cations via intermolecular N—H...O hydrogen bonds with the pyridine ring H atoms and O—H...O hydrogen bonds with the hydroxy H atoms to form polymeric chains, which extend along the [01] direction and comprise R44(18) hydrogen‐bonded ring motifs. These chains are linked to form a three‐dimensional network through nonclassical C—H...O hydrogen bonds between the pyridine ring H atoms and the hydroxy‐group O atoms of neighbouring cations. π–π interactions between the pyridine rings and C—H...π interactions between the methylene H atoms of the succinate anion and the pyridine rings are also present in this network.  相似文献   

13.
ABSTRACT

3-Deoxy-D-erythro-2-hexulosonic acid (KDG), an important metabolite of bacterial polysaccharide degradation, was prepared from D-glucono-1,5-lactone through a six-step sequence, with a 45% overall yield. Using suitable intermediates. KDG methyl ester and its 5- and 6-O-methylated derivatives were also synthesized. 1H and 13C NMR studies of 5- and 6-O-methylated derivatives (pyranoid and furanoid forms respectively) compared to those of KDG and its methyl ester allowed us to conclude that these two latter compounds exist in equilibrium as forms whose percentages were determined.  相似文献   

14.
Both cation and anion in the title compound, C2H12BN2+·I3, lie on a crystallographic mirror plane and are bound in the lattice by N—H⋯I hydrogen bonds, forming layers. Methyl‐H–borane‐H dihydride [–C—H(δ+)⋯(δ)H—B–] inter­actions between mol­ecules crosslink adjacent layers, giving `sandwich' stacking along the a axis.  相似文献   

15.
Selaginellins G ( 1 ) and H ( 2 ), two new selaginellin derivatives, were isolated from the whole plant of Selaginella pulvinata. Their structures were elucidated, and complete assignments of the 1H and 13C NMR spectroscopic data were achieved by 1D and 2D NMR experiments (HSQC, HMBC, COSY and ROESY). Compound 1 displayed good antifungal activity against Candida albicans with an IC50 value of 5.3 µg/ml. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
A series of m‐ and p‐substituted 1‐phenyl, 1‐benzyl, 1‐benzoyl, and 1‐(2‐phenylethyl)pyrroles was prepared and their 1H and 13C nmr spectroscopic characteristics were examined. In general, good correlations were observed between the chemical shift values of the β? H and the β? C of pyrroles [except 1‐(2‐phenylethyl)pyrroles] and the Hammettt σ. The observation may be explained in terms of the electronic effects of the substituents which are transmitted through bonds and through space by interaction of the p orbitals between β? Cs of the pyrrole ring and m‐ and p? Cs of the phenyl ring. Substituent constants of 1‐pyrrolyl, 1‐pyrrolylmethyl, and 1‐pyrroloyl groups for the 1H and 13C chemical shifts of phenyl ring are also presented.  相似文献   

17.
The intramolecular dehydrogenative amidation of aliphatic amides, directed by a bidentate ligand, was developed using a copper‐catalyzed sp3 C H bond functionalization process. The reaction favors predominantly the C H bonds of β‐methyl groups over the unactivated methylene C H bonds. Moreover, a preference for activating sp3 C H bonds of β‐methyl groups, via a five‐membered ring intermediate, over the aromatic sp2 C H bonds was also observed in the cyclometalation step. Additionally, sp3 C H bonds of unactivated secondary sp3 C H bonds could be functionalized by favoring the ring carbon atoms over the linear carbon atoms.  相似文献   

18.
The first total synthesis of lajollamycin B, a structurally novel nitro-tetraene spiro-β-lactone/γ-lactone antibiotic, is described. The convergent synthesis involves the construction of the C8′–C11′ nitrodienylstannane and its coupling with the segment prepared from the C1′–C7′ ω-iodoheptadienoic acid and the right-hand heterocyclic fragment, which has been utilized for our previous syntheses of oxazolomycin A. The revision of the geometry of the terminal Δ10′, 11′-double bond from E to Z is also described for the structure of natural lajollamycin B.  相似文献   

19.
This paper describes the synthesis and structural studies of N-(p-toluenesulfonyl)-amino acid 3,5-di-tert-butyl-2-phenolamides by 1H, 13C, and 15N. The presence of intra- and intermolecular hydrogen bonds were studied by variable temperature NMR spectroscopy. The molecular structure of two amides in the solid state was determined by X-ray diffraction experiments. The results show that tert-butyl substituents in the phenolic ring have important effects in the nature of hydrogen bonds and conformation of these amides. © 2004 Wiley Periodicals, Inc. Heteroatom Chem 15:114–120, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.10223  相似文献   

20.
This study sheds light on the cleavage and reorganization of C(sp3)? H and C?N bonds of carbodiimides in a three‐component reaction of terminal alkynes, sulfur, and carbodiimides by a combination of methods including 1) isolation and X‐ray analysis of six‐membered‐ring lithium species 2‐S , 2) trapping of the oxygen‐analogues ( B‐O and D‐O ) of both four‐membered‐ring intermediate B‐S and ring‐opening intermediate D‐S , 3) deuterium labeling studies, and 4) theoretical studies. These results show that 1) the reaction rate‐determining step is [2+2] cycloaddition, 2) the C?N bond cleavage takes place before C(sp3)? H bond cleavage, 3) the hydrogen attached to C6 in 2‐S originates from the carbodiimide, and 4) three types of new aza‐heterocycles, such as 1,2‐dihydrothiopyrimidines, N‐acyl 2,3‐dihydropyrimidinthiones, and 1,2‐dihydropyrimidinamino acids are constructed efficiently based on 2‐S . All results strongly support the idea that the reaction proceeds through [2+2] cycloaddition/4π electrocyclic ring‐opening/1,5‐H shift/6π electrocyclic ring‐closing as key steps. The research strategy on the synthesis, isolation, and reactivity investigation of important intermediates in metal‐mediated reactions not only helps achieve an in‐depth understanding of reaction mechanisms but also leads to the discovery of new synthetically useful reactions based on the important intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号