首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The polymerization of vinyl chloride (VC) with half‐titanocene /methylaluminoxane (MAO) catalysts is investigated. The polymerization of VC with the Cp*Ti(OCH3)3/MAO catalyst (Cp* = η5‐pentamethylcyclopentadienyl) afforded high‐molecular‐weight poly(vinyl chloride) (PVC) in good yields, although the polymerization proceeded at a slow rate. With the Cp*TiCl3/MAO catalyst, the polymer was also obtained, but the polymer yield was lower than that with the Cp*Ti(OCH3)3/MAO catalyst. The polymerization of VC with the Cp*Ti(OCH3)3/MAO catalyst was influenced by the MAO/Ti mole ratio and reaction temperature, and the optimum was observed at the MAO/Ti mole ratio of about 10. The optimum reaction temperature of VC with the Cp*Ti(OCH3)3/MAO catalyst was around 20 °C. The stereoregularity of PVC obtained with the Cp*Ti(OCH3)3/MAO catalyst was different from that obtained with azobisisobutyronitrile, but highly stereoregular PVC could not be synthesized. From the elemental analyses, the 1H and 13C NMR spectra of the polymers, and the analysis of the reduction product from PVC to polyethylene, the polymer obtained with Cp*Ti(OCH3)3/MAO catalyst consisted of only regular head‐to‐tail units without any anomalous structure, whereas the Cp*TiCl3/MAO catalyst gave the PVC‐bearing anomalous units. The polymerization of VC with the Cp*Ti(OCH3)3/MAO catalyst did not inhibit even in the presence of radical inhibitors such as 2,2,6,6,‐tetrametylpiperidine‐1‐oxyl, indicating that the polymerization of VC did not proceed via a radical mechanism. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 248–256, 2003  相似文献   

2.
The incorporation of 5‐vinyl‐2‐norbornene (VNB) into ethylene‐norbornene copolymer was investigated with catalysts [Ph2C(Fluo)(Cp)]ZrCl2 ( 1 ), rac‐[Et(Ind)2]ZrCl2 ( 2 ), and [Me2Si(Me4Cp)tBuN]TiCl2 ( 3 ) in the presence of MAO by terpolymerizing different amounts of 5‐vinyl‐2‐norbornene with constant amounts of ethylene and norbornene at 60°C. The highest cycloolefin incorporations and highest activity in terpolymerizations were achieved with 1 . The distribution of the monomers in the terpolymer chain was determined by NMR spectroscopy. As confirmed by XRD and DSC analysis, catalysts 1 and 3 produced amorphous terpolymer, whereas 2 yielded terpolymer with crystalline fragments of long ethylene sequences. When compared with poly‐(ethylene‐co‐norbornene), VNB increased both the glass transition temperatures and molar masses of terpolymers produced with the constrained geometry catalyst whereas decreased those for the metallocenes.  相似文献   

3.
茂钛/MAO催化体系进行降冰片烯聚合的研究   总被引:2,自引:0,他引:2  
以降冰片烯为例的环状烯烃的聚合方式主要有两种 :( A) Vinyl-type polymerization;( B) Ring-Opening Polymerization   80年代中期以前 ,环烯烃聚合研究主要集中在开环易位聚合 (ROMP)反应 [1] .Kaminsky[2 ] 首次以[En(Ind) 2 Zr Cl2 ]/MAO等为催化剂进行降冰片烯的聚合 ,获得了熔点极高 (高于其 40 0℃的分解温度 )的大分子量加成结构的聚合物 .研究结果表明 ,具有 C2 和 Cs对称性的茂锆催化体系能高活性地得到降冰片烯加成聚合物 [3,4 ] ,但是这些由茂锆催化体系合成的降冰片烯聚合物不溶于有机溶剂 ,难以进行精确定量的结…  相似文献   

4.
The vinylic polymerization of norbornene and its copolymerization with norbornene carboxylic acid methyl esters were investigated. Norbornene was polymerized by us using di-μ-chloro-bis-(6-methoxybicyclo[2.2.1]hept-2-ene-endo-5σ,2π)-palladium(II) as catalyst. The polymerization time can be decreased by a factor of 100000 by activation of the catalyst with methylaluminoxane (MAO). With this palladium catalyst activated by MAO, 140 t of norbornene can be polymerized per mol palladium per h. This catalyst system was much more active than [Pd(CH3CN)4](BF4)2 ( I ). The polymerization of norbornene by (6-methoxybicyclo[2.2.1]hept-2-ene-endo-5σ,2π)-palladium(II) tetrafluoroborate was also possible but it was not as fast as the polymerization by Pd catalysts activated with MAO. We were also able to obtain copolymers of norbornene and 5-norbornene-2-carboxylic acid methyl ester (exo/endo = 1/4 or 2/3) containing between 15 and 20 mol-% ester units. The copolymerization of norbornene and 2-methyl-5-norbornene-2-carboxylic acid methyl ester (exo/endo = 7/3) was faster than the copolymerization mentioned before. In contrast the homopolymerization of 2-methyl-5-norbornene-2-carboxylic acid methyl ester was 10 times slower than that of 5-norbornene-2-carboxylic acid methyl ester (exo/endo = 1/4).  相似文献   

5.
Metallocene/MAO catalysts are useful for the production of syndiotactic polystyrene - a new class of high performance polymers. The melting point of the obtained syndiotactic polystyrene depends on the metallocene used and can reach up to 275 °C. In the past, the most active catalysts in polymerization have been half-sandwich titanocenes such as CpTiCl3 and Cp*TiCl3. If the chlorinated compounds are changed into the fluorinated compounds as CpTiF3 and Cp*TiF3, the activity increases by a factor of 5 to 100. The fluorinated titanocenes are more stable at higher temperatures and need a lower MAO excess in order to obtain optimal activities. Polymers obtained with the unsubstituted CpTiF3 show melting points which are 17 °C lower than those synthesized by pentamethylcyclopentadienyltitaniumtrifluoride. Especially Cp*TiF3 shows a much higher activity and, compared with the chlorinated compound, gives polymers with a higher molecular weight. Substituted cyclopentadienyltitanocenes have even higher activities. Ethene/styrene copolymers can be obtained by catalysis with zirconocene compounds.  相似文献   

6.
Past research has examined the atom transfer radical polymerization (ATRP) with high oxidation state metal complexes and without the need for any additives such as reducing agent or free radical initiator. To extend this research, half‐metallocene ruthenium(III) (Ru(III)) catalysts were used for the polymerization of methyl methacrylate (MMA) for the first time. These catalysts were generated in situ simply by mixing phosphorus‐containing ligand and pentamethylcyclopentadienyl (Cp*) Ru(III) polymer ((Cp*RuCl2)n). The complexes in their higher oxidation state such as Cp*RuCl2(PPh3) were air‐stable, highly active, and removable catalysts for the ATRPs of MMA with both precision control of molecular weight and narrow polydispersity index. The addition of ppm amount of metal catalyst contributed to the formation of very well‐defined homopolymers and copolymers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

7.
Sterically hindered olefins like norbornene, dimethanooctahydronaphthalene (DMON), 4‐methylpentene, and 3‐methylbutene can be copolymerised with ethene by metallocene/MAO catalysts. Different C2‐, Cs‐ and C1‐symmetric and meso‐zirconocenes were used. Only isolated and alternating norbornene sequences but no norbornene blocks are formed by substituted [Me2C(Cp‐R)(Flu)]ZrCl2 catalysts. The alternating microstructure leads to melting points up to 270°C for ethene‐norbornene copolymers and up to 380°C for the semi‐crystalline alternating copolymer of ethene and DMON. Other sterically hindered olefins such as 3‐methylpentene build more blocky structures with high glass transition temperatures. The mechanism for the insertion reaction of the different catalysts is discussed.  相似文献   

8.
Bis(pyrrolide-imine) Ti complexes in conjunction with methylalumoxane (MAO) were found to work as efficient catalysts for the copolymerization of ethylene and norbornene to afford unique copolymers via an addition-type polymerization mechanism. The catalysts exhibited very high norbornene incorporation, superior to that obtained with Me(2)Si(Me(4)Cp)(N-tert-Bu)TiCl(2) (CGC). The sterically open and highly electrophilic nature of the catalysts is probably responsible for the excellent norbornene incorporation. The catalysts displayed a marked tendency to produce alternating copolymers, which have stereoirregular structures despite the C(2) symmetric nature of the catalysts. The norbornene/ethylene molar ratio in the polymerization medium had a profound influence on the molecular weight distribution of the resulting copolymer. At norbornene/ethylene ratios larger than ca. 1, the catalysts mediated room-temperature living copolymerization of ethylene and norbornene to form high molecular weight monodisperse copolymers (M(n) > 500,000, M(w)/M(n) < 1.20). (13)C NMR spectroscopic analysis of a copolymer, produced under conditions that gave low molecular weight, demonstrated that the copolymerization is initiated by norbornene insertion and that the catalyst mostly exists as a norbornene-last-inserted species under living conditions. Polymerization behavior coupled with DFT calculations suggested that the highly controlled living polymerization stems from the fact that the catalysts possess high affinity and high incorporation ability for norbornene as well as the characteristics of a living ethylene polymerization though under limited conditions (M(n) 225,000, M(w)/M(n) 1.15, 10-s polymerization, 25 degrees C). With the catalyst, unique block copolymers [i.e., poly(ethylene-co-norbornene)(1)-b-poly(ethylene-co-norbornene)(2), PE-b-poly(ethylene-co-norbornene)] were successfully synthesized from ethylene and norbornene. Transmission electron microscopy (TEM) indicated that the PE-b-poly(ethylene-co-norbornene) possesses high potential as a new material consisting of crystalline and amorphous segments which are chemically linked.  相似文献   

9.
Homo‐ and copolymerization of ethylene and norbornene were investigated with bis(β‐diketiminato) titanium complexes [ArNC(CR3)CHC(CR3)NAr]2TiCl2 (R = F, Ar = 2,6‐diisopropylphenyl 2a; R = F, Ar = 2,6‐dimethylphenyl 2b ; R = H, Ar = 2,6‐diisopropylphenyl 2c ; R = H, Ar = 2,6‐dimethylphenyl 2d) in the presence of methylaluminoxane (MAO). The influence of steric and electric effects of complexes on catalytic activity was evaluated. With MAO as cocatalyst, complexes 2a–d are moderately active catalysts for ethylene polymerization producing high‐molecular weight polyethylenes bearing linear structures, but low active catalysts for norbornene polymerization. Moreover, 2a – d are also active ethylene–norbornene (E–N) copolymerization catalysts. The incorporation of norbornene in the E–N copolymer could be controlled by varying the charged norbornene. 13C NMR analyses showed the microstructures of the E–N copolymers were predominantly alternated and isolated norbornene units in copolymer, dyad, and triad sequences of norbornene were detected in the E–N copolymers with high incorporated content of norbornene. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 93–101, 2008  相似文献   

10.
The copolymerization of propene and norbornene with the isospecific metallocene catalyst dimethylsilylenebis(η5-inden-1-yl)zirconium dichloride/methylaluminoxane ((CH3)2Si[Ind]2ZrCl2/MAO) was investigated. Because of the surprisingly high reactivity of the cyclic olefin copolymers with a norbornene content of 11 mol-% up to 98 mol-% were synthesized. The resulting copolymers are amorphous. The glass transition temperatures studied by differential scanning calorimetry measurements increase with rising norbornene content in the copolymer. High glass transition temperatures of Tg > 240°C were found for the copolymers with the highest content of norbornene.  相似文献   

11.
Polymerization of vinyl chloride (VC) with titanium complexes containing Ti‐OPh bond in combination with methylaluminoxane (MAO) catalysts was investigated. Among the titanium complexes examined, Cp*Ti(OPh)3/MAO catalyst (Cp*; pentamethylcyclopentadienyl, Ph; C6H5) gave the highest activity for the polymerization of VC, but the polymerization rate was slow. From the kinetic study on the polymerization of VC with Cp*Ti(OPh)3/MAO catalyst, the relationship between the Mn of the polymer and the polymer yields gave a straight line, and the line passed through the origin. The Mw/Mn values of the polymer gradually decrease as a function of polymer yields, but the Mw/Mn values were somewhat broad. This may be explained by a slow initiation in the polymerization of VC with Cp*Ti(OPh)3/MAO catalyst. The results obtained in this study demonstrate that the molecular weight control of the polymers is possible in the polymerization of VC with the Cp*Ti(OPh)3/MAO catalyst. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3872–3876, 2007  相似文献   

12.
1,2-Propandiol reacts with Cp*Ti(CH3)3 by rapid liberation of methane to yield a dimetallic complex 6 of the net composition (Cp*Ti)2(1,2-propandiolato)3. The X-ray crystal structure analysis revealed an unsymmetrical bridging between the [Cp*Ti(1,2-propandiolato)] and [Cp*Ti(1,2-propandiolato)2] subunits. Cp*TiCl3 reacts with 1,2-propandiol in a 1:1 stoichiometry in the presence of excess pyridine by replacement of two chlorides by a 1,2-propandiolato ligand. The resulting product was isolated as a dimer 8 and characterized by X-ray diffraction. It exhibits a central Ti2O2 ring that was formed by bridging between the two [Cp*TiCl(1,2-propandiolato)] subunits using the oxygen atoms of the primary end of the ligand. From the reaction mixture a more complicated condensation product 9 was isolated in a small yield that contains two [Cp*TiCl(1,2-propandiolato)] units connected in a similar way by a Cp*-free [Ti(1,2-propandiolato)2] moiety as revealed by its X-ray crystal structure analysis. Complex [Cp*TiCl(1,2-propandiolato)]2 (8) gives an active catalyst for the syndiotactic polymerization of styrene upon treatment with excess methylalumoxane in toluene solution.  相似文献   

13.
With C1-, C2- or Cs-symmetric metallocenes, different intermediates and types of copolymers can be obtained from randomly distributed to alternating structures. Substitution of the Cp-ring in [Me2C-(tert-Bu Cp)(Flu)]ZrCl2 yields ethene/norbornene copolymers with an alternating structure, because the rigid norbornene can only be inserted from the open side of the metallocene. By variation of the polymerization parameters, copolymers with glass transition temperatures above 180°C and molecular weights > 100 000 are synthesized. By supporting different metallocenes on a silica/methylaluminoxane (MAO) carrier the deactivation reaction under electron and hydrogen transfer can be suppressed. This is proved for different Al/Zr ratios when trimethylaluminum (TMA) is used as cocatalyst by the lack of methane evolution by metallocenes and by near independence of the polymerization activity on the prereaction time, after reaching maximum activity. Aluminumalkyls and MAO leach Cp2ZrCl2 from the carrier, the leached metallocene is only active in polymerization by adding MAO.  相似文献   

14.
Using 13C- and 1H-NMR spectroscopy, titanium(IV) species formed in the catalytic systems Cp*TiMe3/MAO and Cp*TiCl3/MAO (Cp*=C5(CH3)5) in toluene and chlorobenzene were studied within the temperature range 253-293 K and at Al/Ti ratios 30-300. It was shown that upon activation of Cp*TiMe3 with methylaluminoxane (MAO) mainly the ‘cation-like’ intermediate Cp*Me2Ti+←MeAl(MAO) (2) is formed. Three types of titanium(IV) complexes were identified in Cp*TiCl3/MAO catalytic system. They are methylated complexes Cp*TiMeCl2 and Cp*TiMe2Cl, and the ‘cation-like’ intermediate 2. Complex 2 dominates in Cp*TiCl3/MAO system in conditions approaching to those of practical polymerization (Al/Ti ratios more than 200). According to the EPR measurements, the portion of EPR active Ti(III) species in the Cp*TiCl3/MAO system is smaller than 1% at Al/Ti=35, and is about 10% at Al/Ti=700.  相似文献   

15.
The copolymerization of propene with small amounts of ethene, catalyzed by tetrahydroindenyl zirconocenes such as [En(H4Ind)2]ZrCl2 or [Me2Si(H4Ind)2]ZrCl2 and MAO in liquid propene produces polymers with much higher activities and molecular weights than the homopolymerization of propene. The normal bisindenyl complexes doesn't present such differences. The investigation of the microstructure shows for the tetrahydroindenyl catalyst that after a 2,1-insertion of a propene unit the system is in a sleeping state and can be activated when an ethene unit is inserted. In this case these catalysts become faster than the ansa bis-indenyl catalysts. An active catalyst for the copolymerization of ethene and norbornene is the more temperature stable [Me3PhPen(Flu)]ZrCl2. This catalyst produces atactic copolymers with high molecular weights of over 900 000 g/mol at 30°C and 38 mol% of norbornene content.  相似文献   

16.
The polymerization of vinyl chloride with Cp*TiX3/MAO (X = OCH3, OC4H9, OPh, Cl) catalysts in CH2Cl2 was investigated. The activity of the Cp*TiX3/MAO catalytic systems depends on ligand X in that increased activity was found for increasing electron‐donating capacity of X. The relationship between Hammet's σm of ligand X and polymer yield gave a straight line, indicating that the electronic effect of X plays an important role.  相似文献   

17.
锆茂均相催化体系催化乙烯与降冰片烯共聚合的研究   总被引:3,自引:2,他引:3  
锆茂均相催化体系催化乙烯与降冰片烯共聚合的研究谢光华,王金梅,张盛庆(中国科学院化学研究所,北京,100080)关键词锆茂均相催化体系,乙烯,降冰片烯,共聚合金属二茂基化合物与甲基铝氧烷(MethylalununoxaneMAO)组成以甲苯为溶剂的均...  相似文献   

18.
By treating cyclodextrin(CD) with methylaluminoxane (MAO such as PMAO or MMAO) or trimethylaluminium (TMA) followed by Cp2ZrCl2, CD/PMAO/Cp2ZrCl2, CD/MMAO/Cp2ZrCl2 and CD/TMA/Cp2ZrCl2 catalysts were prepared. The catalysts were analyzed by 13C-CP/MAS NMR spectrometer and ICP to examine the structure of catalyst and content of Zr and Al. Ethylene polymerization was conducted with MAO or TMA as cocatalyst. Styrene polymerization was also carried out with α-CD/MMAO/Cp*TiCl3 and α-CD/TMA/Cp*TiCl3 catalysts. While the ordinary trialkylaluminium such as TMA as well as MAO can be used as cocatalyst for ethylene polymerization, only MAO could initiate the styrene polymerization with α-CD supported catalysts.  相似文献   

19.
The end‐functionalization of syndiotactic polypropylene‐based copolymers can be accomplished by conducting propylene polymerization in the presence of norbornene using Me2C(Cp)(Flu)ZrCl2/MAO as the catalyst. The detailed structural analyses clearly reveal the occurrence of the β‐methyl elimination chain transfer reaction that leads to the generation of the ethenyl group end‐capped syndiotactic polypropylene‐based propylene–norbornene copolymer. Subsequently, the ethenyl group end‐capped copolymer can be used for the preparation of other end‐functionalized syndiotactic polypropylene‐based copolymers by conducting organic functional group transformation reactions. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2167–2176, 2008  相似文献   

20.
The major part of the present paper discusses the ability of well-defined ω-undecenyl polystyrene, polyisoprene or poly(styrene-block-isoprene) macromonomers to undergo coordination homopolymerization in the presence of selected titanium catalysts. Special emphasis is given to the influence of the nature of the catalyst, the polymerization temperature and the macromonomer molar mass and concentration on homopolymerization yield and average degree of homopolymerization (DPn). Titanium-based catalytic systems such as CpTiCl3/MAO and Cp*TiCl3/MAO only yielded dimers. The use of the homogeneous metallocene catalyst with constrained ligand geometry (CGC-Ti/MAO) having an open active site, significantly improved the degree of polymerization. Increasing macromonomer molar mass, causes only a slight decrease of DPn whereas conversion increased moderately. The final section briefly discusses the copolymerization of ω-undecenyl polystyrene macromonomers with ethylene in the presence of Versipol™ catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号