首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several simple three-dimensional Fermi-gas models for potential energy curves of diatomic molecules are suggested. Bond-charge parameters close to those predicted by the earlier point bondcharge model of Borkman, Simons and Parr [J. Chem. Phys. 49, 1055 (1968); 50, 58 (1969)] are obtained for models assuming uniform spherical or elliptical electron distributions in the bond region.Aided by a research grant to The Johns Hopkins University from the National Science Foundation.  相似文献   

2.
The ground- [NO(X(2)Π)] and excited-state [NO(A(2)Σ(+))] intermolecular potential energy surfaces (IPESs) of the NO-Ne and NO-Ar van der Waals complexes are evaluated using the RCCSD(T) spin-restricted coupled cluster method and d-aug-cc-pVQZ basis set extended with a set of 3s3p2d1f1g midbond functions. These bases are selected from the results of a systematic basis-set convergence study carried out for the NO(A(2)Σ(+))-Ar state. We fit the interaction energies to analytic functions and compare the results to those previously available. The NO-Ar (NO-Ne) IPESs are characterized by absolute minima of -120 and -75 cm(-1) (-58 and -5 cm(-1)) at the ground and first excited state, respectively, located close to the T-shaped geometries for the ground states and at linear dispositions in the case of the excited states. The potentials are further used in the evaluation of the rovibrational spectra of the complexes, and the results are compared to those available in the literature.  相似文献   

3.
The results of large-scale valence ab initio calculations of the potential-energy curves for the ground states and several excited states of Cd–rare gas (RG) van der Waals molecules are reported. In the calculations, Cd20+ and RG8+ cores are simulated by energy-consistent pseudopotentials, which also account for scalar-relativistic effects and spin-orbit interaction within the valence shell. The potential energies of the Cd–RG species in the ΛS coupling scheme have been evaluated by means of ab initio complete-active-space multiconfiguration self-consistent-field (CASSCF)/CAS multireference second-order perturbation theory (CASPT2) calculations with a total 28 valence electrons, but the spin-orbit matrix has been computed in a reduced configuration interaction space restricted to the CASSCF level. Finally, the Ω potential curves are obtained by diagonalization of the modified spin-orbit matrix (its diagonal elements before diagonalization substituted by the corresponding CASPT2 eigenenergies). The calculated potential curves, especially the spectroscopic parameters derived for the ground states and several excited states of the Cd–RG species are presented and discussed in the context of available experimental data. The theoretical results exhibit very good agreement with experiment. Received: 20 April 2000 / Accepted: 1 September 2000 / Published online: 21 December 2000  相似文献   

4.
The electronic structure of the Ca2 molecule has been investigated by use of a two-valence-electron semiempirical pseudopotential and applying the internally contracted multireference configuration interaction method with complete-active-space self-consistent-field reference wave functions. Core–valence correlation effects have been accounted for by adding a core-polarization potential to the Hamiltonian. The ground-state properties of the Ca2 and Ca2+ dimers have also been studied at the single-reference coupled-cluster level with single and double excitations including a perturbative treatment of triple excitations. Good agreement with experiment has been obtained for the ground-state potential curve and the only experimentally known A1u+ excited state of Ca2. The spectroscopic parameters De and Re deduced from the calculated potential curves for other states are also reported. In addition, spin–orbit coupling between the singlet and triplet molecular states correlating, respectively, with the (4p)1P and (4p)3P Ca terms has been investigated using a semi-empirical two-electron spin–orbit pseudopotential. Acknowledgement.This work was supported by grant 5 P03B 082 21 from the Polish State Committee for Scientific Research (KBN).  相似文献   

5.
Evaluation of intermolecular distance and binding energy (BE) of van der Waals complex/cluster at ab initio level of theory is computationally demanding when many monomers are involved. Starting from MP2 energy, we reached a two-step evaluation method of BE of van der Waals complex/cluster through reasonable approximations; BE = BE(HF) + sum Mi> Mj{BE (Mi- Mj)(MP2 or MP2.5) - BE(Mi-Mj)(HF)} where HF represents the Hartree-Fock calculation, Mi, Mj, etc. are interacting monomers, and MP2.5 represents the arithmetic mean of MP2 and MP3. The first term is the usual BE of the complex/cluster evaluated at the HF level. The second term is the sum of the difference in two-body BE between the correlated and HF levels of theory. This equation was applied to various van der Waals complexes consisting of up-to-four monomers at MP2 and MP2.5 levels of theory. We found that this method is capable of providing precise estimate of the BE and reproducing well the potential energy surface of van der Waals complexes/clusters; the maximum error of the BE is less than 1 kcal/mol and 1% in most cases except for several limited cases. The origins of error in these cases are discussed in detail.  相似文献   

6.
High-resolution energy spectra of electrons released in Penning ionization collisions of metastable rare gas atoms Rg*(ns) (Rg = He, Ne, Ar, Kr, Xe) with several open-shell and closed-shell atoms are analyzed to determine the well depth of the potential energy curve which describes the respective autoionizing collision complex. We thereby elucidate trends in the chemical interaction of Rg* with closed-shell target atoms A(ns 2) and establish a basis for detailed comparison with the respective interactions involving open-shell, ground state alkali atoms A(ns). From electron energy spectra due to␣associative ionization (RgH+ formation) in Rg* + H(1s) collisions, we determine binding energies for the RgH+(1Σ) ground state potential (Rg = Ne, Ar, Kr, Xe) with uncertainties around 0.03 eV. Received: 30 June 1998 / Accepted: 5 August 1998 / Published online: 28 October 1998  相似文献   

7.
A portable remote Raman instrument for field analysis has been developed. This instrument has been tested in the Arctic conditions during AMASE (Arctic Mars Analog Svalbard Expedition) campaigns 2007, 2008 and 2009. Besides its capability for mineral detection the remote system proved to be a very useful tool for ice structural analysis of icebergs and ice-wall in glaciers. For the first time at our knowledge Arctic ice has been analyzed in situ in different conditions and at distances ranging from 10 to 120m. The spectra obtained have enough quality to be used for quantitative spectral analysis.  相似文献   

8.
The calculations on the potential energy curves and spectroscopic constants of the ground and low-lying excited states of BrCl ,one of the important molecular ions in environment science,have been performed by using the multireference configuration interaction method at high level of theory in quantum chemistry.Through analyses of the effects of the spin-orbit coupling interaction on the elec-tronic structures and spectroscopic properties,the multiconfiguration characteristic of the X2Π ground state and low-lying excited states was established.The spin-orbit coupling splitting energy of the X2 Π ground state was calculated to be 1814 cm-1,close to the experimental value 2070 cm-1.The spin-orbit coupling splitting energy of the 2Π(Ⅱ) exited state was predicted to be 766 cm-1.The transition dipole moments and Frank-Condon factors of the 3/2(Ⅲ)-X3/2 and 1/2(Ⅲ)-1/2(I) transitions were estimated,and the radiative lifetimes of the two transitions were briefly discussed.  相似文献   

9.
The multireference configuration interaction (MRCI) electronic energy calculations with different basis sets have been performed on the ground state (X1Σ) and three low-lying excited states (3Σ, 1Π and 3Π) of HgCd dimer. The obtained potential energy curves (PECs) are fit to analytical potential energy functions (APEFs) using the Murrell–Sorbie potential function. Spectroscopic constants are calculated using the APEFs. Based on the PECs, the vibrational levels of each state are predicted. Our equilibrium positions of the X1Σ state and 3Π state are in excellent agreement with the experimental reports.  相似文献   

10.
Evolution of hydrogen molecule, starting initially from its field‐free ground state, in a time‐dependent (TD) magnetic field of order 1011 G is presented in a parallel internuclear axis and magnetic field‐axis configuration. Effective potential energy curves (EPECs), in terms of exchange and correlation energy, of the hydrogen molecule as a function of TD magnetic‐field strength, are analyzed through TD density functional computations based on a quantum fluid dynamics approach. The numerical computations are performed for internuclear separation R ranging from 0.1 to 14.0 a.u. The EPECs exhibit field‐dependent significant potential‐well minima both at large internuclear separations and at short internuclear separations with a considerable increase in the exchange and correlation energy of the hydrogen molecule. The results, when compared with the time‐independent (TI) studies involving static TI magnetic fields, reveal TD behavior of field‐dependent crossovers between different spin‐states of hydrogen molecule as indicated by the TI investigations in static magnetic fields. Besides this, present work reveals interesting dynamics in the TD total‐electronic charge‐density distribution of the hydrogen molecule. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

11.
The experimental electron affinities of benzene, Ea(Bz), 0.4 to ?4.8 eV, are evaluated. Multiple negative ion states are proposed to account for different electron affinities. The semi‐empirical procedure known as “configuration interaction or unrestricted orbitals to relate experimental quantities to self‐consistent field values by estimating electron correlation” (CURES‐EC) has several advantages: (i) supports multiple Ea(Bz), (ii) supports the Ea(phenyl) and the D(C? H,Bz), (iii) supports the gas phase acidity of benzene from the latter, (iv) predicts the singlet–triplet split for the phenyl anion of 1.2(2) eV, and (v) predicts the existence of an excited quartet state of the benzene anion with an Ea(Bz), ?2.5(2) eV. Nine ionic Morse curves are calculated from CURES‐EC properties and experimental data. These are compared with quantum mechanical crossing “c” potentials obtained using a subroutine in commercial software and ab initio and density functional theory (DFT) procedures. Curves are calculated for the proposed quartet state of the benzene anion. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

12.
The potential energy curves of the low-lying X2Σ+, A2πi, B2Σ+,4Σ+, and 4π states of CN are calculated by the MC SCF (CAS SCF) method. Their vibrational levels and the molecular constants obtained are in good agreement with those determined in our recent experimental analysis of the CN (B2Σ+-X2Σ+) emission spectrum. several intensity anomalies in the observed spectrum are ascribed to perturbations between the B2Σ+ and 4π states with the following vibrational quantum numbers: (υB, υπ)=(9,x), (11, x+2), (12, x+3), (14, x+6), (17, x+11), and (18, x+13), where x = 0 is the most probable assignment. Likewise, the perturbations between the B2Σ+ and 4Σ+ states with (υB, υΣ) = (11, y), (13, y+3) are interpreted as y = 8±1.  相似文献   

13.
An ab initio and Density Functional Theory (DFT) study of the conformational properties of cyclododecane was carried out. The energetically preferred equilibrium structures, their relative stability, and some of the transition state (TS) structures involved in the conformational interconversion pathways were analyzed from RHF/6‐31G(d), B3LYP/6‐31G(d,p) and B3LYP/6311++G(d,p) calculations. Aug‐cc‐pVDZ//B3LYP/6311++G(d,p) single point calculations predict that the multistep conformational interconversion mechanism requires 11.07 kcal/mol, which is in agreement with the available experimental data. These results allow us to form a concise idea about the internal intricacies of the preferred forms of cyclododecane, describing the conformations as well as the conformational interconversion processes in the conformational potential energy hypersurface. Our results indicated that performing an exhaustive analysis of the potential energy curves connecting the most representative conformations is a valid alternate tool to determine the principal conformational interconversion paths for cyclododecane. This methodology represents a satisfactory first approximation for the conformational analysis of medium‐ and large‐size flexible cyclic compounds. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

14.
The three-dimensional (3D) potential energy surface of the ground state of Li3 was determined by the multireference configuration interaction method. The vibrational motions and pseudorotation were investigated by a 3D time-dependent wavepacket formalism. The analytical expression of the 3D surface is given and the results of vibrational analyses at several critical points are presented. The low-lying excited states of Li3 were examined for the C 2 v structure and the vertical and adiabatic excitation energies were calculated. The ground and singlet excited states of Li2 were calculated and their spectroscopic constants compare well with the experimental values. A 3D wavepacket calculation was performed for simulations of the stimulated emission pumping spectrum in which the A state was taken as an intermediate. The recurrences of the autocorrelation functions were characterized by classical trajectory calculations. The autocorrelation functions obtained by wavepacket propagation are reproduced well by the accumulation of the classical trajectories in the short-time region. Received: 2 July 1998 / Accepted: 3 September 1998 / Published online: 8 February 1999  相似文献   

15.
A simple proof is presented for a fundamental topological property of catchment regions of potential energy hypersurfaces: each catchment region C(λ,i), representing a chemical species and its conformational range on the potential energy hypersurface, is simply k-connected for each dimension k=1,2,…3N−6−λ, where λ is the index of the catchment region. The consequences of this property on the structure of the fundamental group of reaction mechanisms (the one-dimensional homotopy group of reaction paths) is discussed. Received: 8 July 1998 / Accepted: 6 October 1998 / Published online: 23 February 1999  相似文献   

16.
The potential energy surface for the electronic ground state of the HXeI molecule is constructed by using the internally contracted multi-reference configuration interaction with the Davidson correction(icMRCI+Q)method and large basis sets. The stabilities and dissociation barriers are identified from the potential energy surfaces.The three-body dissociation channel is found to be the dominate dissociation channel for HXeI.Based on the obtained potentials,vibrational energy levels of HXeI are calculated using the Lanczos algorithm.Our theoretical results are in excellent agreement with the available observed values.  相似文献   

17.
A three-dimensional global potential energy surface for the electronic ground state of HXeBr molecule is constructed from more than 4200 ab initio points. These points are generated using an internally contracted multi-reference configuration interaction method with the Davidson correction (icMRCI + Q) and large basis sets. The stabilities and dissociation barriers are identified from the potential energy surfaces. The three-body dissociation channel is found to be the dominate dissociation channel for HXeBr. Based on the obtained potentials, low-lying vibrational energy levels of HXeBr calculated using the Lanczos algorithm is found to be in good agreement with the available experimental band origins.  相似文献   

18.
19.
In this paper,we have suggested an iterative procedure of optimization of the linearparameters in an analytic potential energy function for a triatomic molecule,by combining both variational and second order perturbation methods.The most important feature of this procedure is that the objective function is an analytical expression which can be optimized easily.The application to the water molecule is presented.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号