首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
This study deals with the elastostatic problem of a penny-shaped crack in an elastic matrix which is reinforced by filaments or fibers perpendicular to the plane of the crack. An elastic filament model is developed in the first paper. The second paper considers the application of the model to the penny-shaped crack problem in which the filaments of finite length are symmetrically distributed around the crack. The reinforcement problem for the cracked matrix with elastic fibers of different diameter, modulus, and relative location is considered in the third paper. Since the primary interest is in the application of the results to studies relating to the fracture of fiber or filament-reinforced composites and reinforced concrete, the main emphasis of the study will be on the evaluation of the stress intensity factor along the periphery of the crack, the stresses in the filaments or fibers, and the interface shear between the matrix and the filaments or fibers.  相似文献   

2.
A dynamic model of bridging fiber pull-out of composite materials   总被引:3,自引:0,他引:3  
An elastic analysis of an internal central crack with bridging fibers parallel to the free surface in an infinite orthotropic anisotropic elastic plane is carried out. In this paper a dynamic model of bridging fiber pull-out is presented for analyzing the distributions stress and displacement of composite materials with the internal central crack under the loading conditions of an applied non-uniform stress and the traction forces on crack faces yielded by the fiber pull-out model. Thus the fiber failure is determined by maximum tensile stress, the fiber breaks and hence the crack propagation should occur in self-similar fashion. By reducing the dynamic model to the Keldysh–Sedov mixed boundary value problem, a straightforward and easy analytical solution can be attained. When the crack extends, its fibers continue to break. Analytical study on the crack extension under the action of an inhomogeneous point force Px/t, Pt is obtained for orthotropic anisotropic body, respectively; and it can be utilized to attain the concrete solutions of the model by the ways of superposition.  相似文献   

3.
裂纹端部细短纤维的应力分析   总被引:5,自引:0,他引:5  
基于裂纹端部存在与其裂纹面相垂直的二相细短纤维分析模型,采用叠加原理推导了求解纤维表面应力分布函数的积分方程,通过简化得到了该方程的解析表达显式,该积分方程的特征值方程是纤维几何参数,材料常数以及纤维相对于裂纹位置的相关函数,当材料参数不满足特征方程时,积分方程将具有唯一解;并借助数值方法,给出了纤维剪应力分布算例,和纤维对应力强度因子的影响。  相似文献   

4.
An elastic analysis of an internal central crack with bridging fibers parallel to the free surface in an infinite orthotropic anisotropic elastic plane was performed. A dynamic model of bridging fiber pull-out of composite materials was presented. Resultingly the fiber failure is governed by maximum tensile stress, the fiber breaks and hence the crack extension should occur in self-similar fashion. By the methods of complex functions, the problem studied can be transformed into the dynamic model to the Reimann-Hilbert mixed boundary value problem, and a straightforward and easy analytical solution is presented. Analytical study on the crack propagation subjected to a ladder load and an instantaneous pulse loading is obtained respectively for orthotropic anisotropic body. By utilizing the solution, the concrete solutions of this model are attained by ways of superposition.  相似文献   

5.
An elastic analysis of an internal crack with bridging fibers parallel to the free surface in an infinite orthotropic elastic plane is studied. An asymmetrical dynamic model for bridging fiber pull-out of unidirectional composite materials is presented for analyzing the distributions of stress and displacement with the internal asymmetrical crack under the loading conditions of an applied non-homogenous stress and the traction forces on crack faces yielded by the bridging fiber pull-out model. Thus the fiber failure is determined by maximum tensile stress, resulting in fiber rupture and hence the crack propagation would occur in a self-similarity manner. The formulation involves the development of a Riemann-Hilbert problem. Analytical solution of an asymmetrical propagation crack of unidirectional composite materials under the conditions of two moving loads given is obtained, respectively. After those analytical solutions were utilized by superposition theorem, the solutions of arbitrary complex problems could be obtained.  相似文献   

6.
An elastic analysis of an internal crack with bridging fibers parallel to the free surface in an infinite orthotropic anisotropic elastic plane is studied, and asymmetrical dynamic fracture model of bridging fiber pull-out of unidirectional composite materials is presented for analyzing the distributions of stress and displacement with the internal asymmetrical crack under the loading conditions of an applied non-homogenous stress and the traction forces on crack faces yielded by the bridging fiber pull-out model. Thus the fiber failure is ascertained by maximum tensile stress, the fiber ruptures and hence the crack propagation should also appear in the modality of self-similarity. The formulation involves the development of a Riemann-Hilbert problem. Analytical solution of an asymmetrical propagation crack of unidirectional composite materials under the conditions of two increasing loads given is obtained, respectively. In terms of correlative material properties, the variable rule of dynamic stress intensity factor was depicted very well. After those analytical solutions were utilized by superposition theorem, the solutions of arbitrary complex problems could be gained.  相似文献   

7.
In order to evaluate the strength of fiber-reinforced composites, there is first the need to investigate the interfacial debonding and the pull-out of fibers in a fractured composite with intact fibers. This type of problem in crack bridging has been investigated by several authors based on different models and assumptions [1–7]. In this study, we will consider a three-dimensional model of a single fiber of finite length bonded by a finite cylindrical matrix with an initial crack existing in a portion of the interface. In the model, one end of the cylinder is so constrained that the axial component of displacement vanishes. A tensile stress is applied to the fiber at the other end. The aim is to determine the pull-out of the fiber and the critical condition for interfacial debonding. Both the fiber and the matrix are treated as elastic materials. Analysis is made based on a method using Papkovich-Neuber displacement potential functions for the problem of an elastic solid subjected to axisymmetrical boundary conditions. Solutions are found by means of the technique of trigonometrical series. Effects of initial misfit strains and frictional sliding between the fiber and the matrix over the interfacial crack are also included in the study.  相似文献   

8.
The propagation of harmonic elastic wave in an infinite three-dimensional matrix containing an interacting low-rigidity disk-shaped inclusion and a crack. The problem is reduced to a system of boundary integral equations for functions that characterize jumps of displacements on the inclusion and crack. The unknown functions are determined by numerical solution of the system of boundary integral equations. For the symmetric problem, graphs are given of the dynamic stress intensity factors in the vicinity of the circular inclusion and the crack on the wavenumber for different distances between them and different compliance parameters of the inclusion.  相似文献   

9.
The three-dimensional problem of a periodic unidirectional composite with a penny-shaped crack traversing one of the fibers is analyzed by the continuum equations of elasticity. The solution of the crack problem is represented by a superposition of weighted unit normal displacement jump solutions, everyone of which forms a Green’s function. The Green’s functions for the unbounded periodic composite are obtained by the combined use of the representative cell method and the higher-order theory. The representative cell method, based on the triple discrete Fourier transform, allows the reduction of the problem of an infinite domain to a problem of a finite one in the transform space. This problem is solved by the higher-order theory according to which the transformed displacement vector is expressed by a second order expansion in terms of local coordinates, in conjunction with the equilibrium equations and the relevant boundary conditions. The actual elastic field is obtained by a numerical evaluation of the inverse transform. The accuracy of the suggested approach is verified by a comparison with the exact analytical solution for a penny-shaped crack embedded in a homogeneous medium. Results for a unidirectional composite with a broken fiber are given for various fiber volume fractions and fiber-to-matrix stiffness ratios. It is shown that for certain parameter combinations the use of the average stress in the fiber, as it is employed in the framework of the shear lag approach, for the prediction of composite’s strength, leads to an over estimation. To this end, the concept of “point stress concentration factor” is introduced to characterize the strength of the composite with a broken fiber. Several generalizations of the proposed approach are offered.  相似文献   

10.
Steady-state anisotropic thermoelasticity equations are used to obtain the stress intensity factors for a cracked layer sandwiched between two different anisotropic elastic solids. The anisotropy is assumed to arise from discrete fibers whose orientation could alter with reference to the crack edges. A generalized plane deformation prevails in the dissimilar media domain with a line of discontinuity disturbing a uniform heat flow. The flexibility/stiffness matrix approach is used such that the crack problem reduces to solving two sets of singular integral equations. Numerical values of the crack tip stress-intensity factors are obtained for various crack size, crack location, crack surface insulation, fiber volume fraction and orientation angles. The results are displayed graphically.  相似文献   

11.
The effects of three types of defect (i.e., two micro defects—broken fibers and separation of fiber joints and one macro defect—crack) on the mechanical properties of porous metal fiber sintered sheets (MFSSs) are investigated by a combination of numerical simulation, analytical modeling, and experimental test. All simulations are based upon the previously developed micromechanics random beam model (Jin et al., 2013). Broken fibers are realized by removing cell edges (i.e., fibers between two joints) in an otherwise perfect model. Their induced decreases in the elastic moduli and strengths are found to be much lower than those of two dimensional (2D) foams and Kagome grids. For the defect in the form of separation of fiber joints, both analytical and numerical models are developed. The predicted linear decreases in the moduli and strengths (except for the compressive strength) with increasing number of separated fiber joints indicate that MFSSs be insensitive to the defect of joint separation. To explore the effect of crack, fracture toughness of MFSSs is measured and is found to be significantly higher than that of metal foams of the same relative density (i.e., volume fraction of the constituent solid material). The underlying ductile mechanism of MFSSs is further investigated by numerical simulations, showing that plastic deformation spreads all over the fibers in ligament rather than concentrates around crack tip. This study shows that MFSSs are superior in view of their resistance to the considered micro-defects and crack.  相似文献   

12.
Vladimir Kobelev 《Meccanica》2006,41(6):653-660
Failure of a composite is a complex process accompanied by irreversible changes in the microstructure of the material. Microscopic mechanisms are known of the accumulation of damage and failure of the type of localized and multiple ruptures of the fibers delamination along interphase boundaries, and also mechanisms associated with fracture of fibers. In this work, we propose a mathematical model of the local mechanism of failure of a composite material randomly reinforced with a system of short fibers. We implement the Cosserat moment model of crack tip for filament material, reinforced with whiskers or in fiber- reinforced polycrystalline materials. It is assumed that the angular distribution of the fibers is isotropic and the elastic characteristics of the fibers are considerably higher than the elastic constants of the matrix. We implement the homogenization procedure for the effective Cosserat constants similarly to the effective elastic constants. The singular solution in the vicinity of the crack tip in the Cosserat moment model is found. Using this solution, we examine the bending stresses in the filaments due to effective moment stresses in the material. The constructed model describes the phenomenon of fracture of the fibers occurring during crack propagation in those composites. The following assumptions are used as the main hypotheses for the micromechanical model. The matrix contains a nucleation crack. When the load is increased the crack grows and its boundary comes into contact with the reinforcing fibers. A further increase of the stress causes bending of the fiber. When~the fiber curvature reaches a specific critical value, the fiber ruptures. If the stress at infinity is given, the fibers no longer delay the development of failure during crack propagation The degree of bending distortion of the fiber in the vicinity of the boundary of the crack is determined by the moment model of the material. The necessity to take into account the moment stresses in the failure theory of the reinforced material was stressed in [Muki and Sternberg (1965) Zeitschrift f angew Math und Phys 16:611–615; Garajeu and Soos (2003) Math Mech Solids 8(2):189–218; Ostoja-Starzewski et al (1999) Mech Res Commun 26:387–396]. The moment Cosserat stresses were accounted also for inhomogeneous biomechanical materials by Buechner and Lakes (2003) Bio Mech Model Mechanobiol 1: 295–301. We should also mention the important methodological studies [Sternberg and Muki (1967) J Solids Struct 1:69–95; Atkinson and Leppington (1977) Int J Solids Struct 13: 1103–1122] concerned with the moment stresses in homogeneous fracture mechanics.  相似文献   

13.
The plane static elastic problem of stress concentration in a unidirectional discrete infinite composite weakened by fiber breaks on a line normal to the reinforcement direction (an analog of the Griffith problem of elasticity theory) is considered. The composite is subjected to uniform stresses at infinity, and the crack edges are loaded symmetrically by the normal pressure. The problem reduces to constructing a polynomial with known values at the points of fiber breaks. The stress distribution along the line of breaks is obtained in the form of a fractional rational function of fiber number.  相似文献   

14.
单向纤维增强复合材料中纤维断裂及其发展   总被引:1,自引:0,他引:1  
茅人杰  孙国钧 《力学季刊》1997,18(2):160-168
纤维增强复合材料中某根纤维断裂后,断口作为裂纹向何处发展?它可以向纤维和基体的界面发展形成界面脱粘,也可向基体发展,造成基体开展,从而殃及邻近纤维。另外,一根纤维的断裂会在其邻近纤维中造成应力集中。本文采取轴对称边界元法对这些问题进行仔细研究。本文假定纤维在基体中成六角形分布,即每根纤维周围有六根纤维,均匀地分布在以该纤维为中心的圆周上。  相似文献   

15.
Infinitesimal plane deformations of ideal fiber-reinforced composites with elastic shearing stress response are considered. The fibers are straight and parallel, and there is a straight crack perpendicular to the fibers. A general expression for the energy release rate per unit length of crack advance is obtained. Explicit expressions in terms of the body geometry and loading are obtained for three special classes of body shapes: bodies symmetrical about a fiber, bodies bounded on the cracked side by a fiber, and bodies bounded on the opposite side by a fiber. The results also apply to cracks parallel to the fibers, and to cracks in compressible materials reinforced by two orthogonal families of inextensible fibers.  相似文献   

16.
To evaluate the mechanical strength of fiber-reinforced composites it is necessary to consider singular stresses at the end of fibers because they cause crack initiation, propagation, and final failure. The singular stress field is controlled by generalized stress intensity factor (GSIF) defined at the fiber end. In this study, periodic and zigzag arrays of cylindrical inclusions under longitudinal tension are considered in comparison with the results for a single fiber. The unit cell region is approximated as an axi-symmetric cell; then, the body force method is applied, which requires the stress and displacement fields due to ring forces in infinite bodies having the same elastic constants as those of the matrix and inclusions. The given problem is solved on the superposition of two auxiliary problems under different boundary conditions. To obtain the GSIF accurately, the unknown body force densities are expressed as piecewise smooth functions using fundamental densities and power series. Here, the fundamental densities are chosen to represent the symmetric stress singularity, and the skew-symmetric stress singularity. The GSIFs are systematically calculated with varying the elastic modulus ratio and spacing of fibers. The effects of volume fraction and spacing of fibers are discussed in fiber-reinforced plastics.  相似文献   

17.
A fibrous composite beam with an edge crack is submitted to a cyclic bending moment and the crack bridging actions due to the fibers. Assuming a general elastic-linearly hardening crack bridging model for the fibers and a linear-elastic law for the matrix, the statically indeterminate bridging actions are obtained from compatibility conditions. The elastic and plastic shake-down phenomena are examined in terms of generalised cross-sectional quantities and, by employing a fatigue crack growth law, the mechanical behaviour up to failure is captured. Within the framework of the proposed fracture mechanics-based model, the cyclic crack bridging due to debonding at fiber–matrix interface of short fibers is analysed in depth. By means of some simplifying assumptions, such a phenomenon can be described by a linear isotropic tensile softening/compressive hardening law. Finally, numerical examples are presented for fibrous composite beams with randomly distributed short fibers.  相似文献   

18.
The elastostatic problem for cracked shallow spherical shell resting on linear elastic foundation is considered. The problem is formulated for a homogeneous isotropic material within the confines of a linearized shallow shell theory. By making use of integral transforms and asymptotic analysis, the problem is reduced to the solution of a pair of singular integral equations. The stress distribution obtained, around the crack tip, is similar to that of the elasticity solutions. The numerical results obtained agree well with those of previous work, where the elastic supports were neglected. The influences of the shell curvature and the modulus of subgrade reaction on the stress intensity factor are given.  相似文献   

19.
This paper is a study into the interaction of two triaxial ellipsoidal cavities whose surfaces are under different pressures with an elliptic crack in an infinite elastic medium. The stress state in the elastic space is represented by a superposition of perturbed states due to the presence and interaction of the cavities and the crack. The exact solution of the problem is constructed by using a modified method of equivalent inclusion, the potential of an inhomogeneous ellipsoid, and a system of harmonic functions for the elliptic crack. A numerical analysis is carried out to find how the geometry of the cavities and the crack, the distance between them, and the pressure on their surfaces affect the stress intensity factors  相似文献   

20.
用压电材料进行损伤鉴别的理论与数值分析   总被引:1,自引:0,他引:1  
对压电材料用于损伤监测的理论和数值分析做了一些研究。首先,设计了一种用压电材料进行损伤监测的模型。然后,对这个模型进行分析,找出简单有效的解答办法,将求解过程分解为断裂力学分析和压电分析两部分,并通过适当的假设,进行了详细的理论推导。通过正电有限元程序进行仿真计算,将数值计算结果与理论解进行比较以验证提出理论的正确性,并分析得到了裂纹参数与压电层表面电势变化之间的关系和普通弹性材料泊松比对波峰参数的影响。最后,用提出的方法验算了两个例题。从结果来看,理论结果和数值结果非常接近。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号