首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a derivation of the Schrieffer-Wolff transformation for the Anderson Lattice Hamiltonian with a two-fold degenerate f-level in each site. The degeneracy of the f-electrons has been taken into account in order to describe uranium and other actinide magnetic compounds with a spin larger than , for example a total S=1 spin for the f-electrons. The transformed Hamiltonian has several terms as in the classical case, but we have obtained here both an exchange (Kondo) interaction between the S=1 f-spins and the spins of the conduction electrons, and also an effective f-band term. This f-band term describes better the underscreened Kondo lattice model which has been recently developed to explain the Kondo-ferromagnetism coexistence observed in uranium compounds such as UTe [N.B. Perkins, M.D. Nunez-Regueiro, J. R. Iglesias, B. Coqblin, Phys. Rev. B 76 (2007) 125101].  相似文献   

2.
We apply the equation of motion method to the Anderson lattice model, which describes the physical properties of heavy fermion compounds. In particular, we focus here on the variation of the number of f electrons with pressure, associated to the crossover from the Kondo regime to the intermediate valence regime. We treat here the non-magnetic case and introduce an improved approximation, which consists of an alloy analogy based decoupling for the Anderson lattice model. It is implemented by partial incorporation of the spatial correlations contained in higher-order Green's functions involved in the problem that have been formerly neglected. As it has been verified in the framework of the Hubbard model, the alloy analogy avoids the breakdown of sum rules and is more appropriate to explore the asymmetric case of the periodic Anderson Hamiltonian. The densities of states for a simple cubic lattice are calculated for various values of the model parameters V, t, Ef, and U.  相似文献   

3.
The Kondo lattice model describes a lattice of localized spins Si interacting with the conduction electrons via a local exchange coupling J. Assuming a ferromagnetic Hund's rule coupling J>0, the model can be used to describe some itinerant magnetocaloric materials such as Gd(SixGe1-x)4, La(Fe1-xSix)13, and LaCa1-xMnxO3, which are important for magnetic refrigeration near room temperature. The localized magnetic moments are described in the model Hamiltonian by spin operators, and the conduction electrons by fermionic operators. To study the magnetocaloric effect, a uniform external magnetic field is added through a Zeeman term. By averaging the fermionic degrees of freedom, one obtains an indirect exchange coupling between spins at sites i and j, which corresponds to the RKKY interaction. The self-consistent mean value is evaluated in the effective Heisenberg Hamiltonian within the random phase approximation (RPA). The conduction electron magnetization for a given value of is obtained from the corresponding Green's functions through the equation of motion method. The pressure and doping dependence of the Curie temperature are taken into account in the evaluation of . The magnetocaloric effect is characterized by the isothermal entropy change ΔS and the adiabatic temperature change ΔTad upon magnetic field variations in the neighborhood of the ferromagnetic phase transition. The results are obtained for and compared to measurements with Gd compounds.  相似文献   

4.
The unique linear density of state around the Dirac points for the honeycomb lattice brings much novel features in strongly correlated models. Here we study the ground-state phase diagram of the Kondo lattice model on the honeycomb lattice at half-filling by using an extended mean-field theory. By treating magnetic interaction and Kondo screening on an equal footing, it is found that besides a trivial discontinuous first-order quantum phase transition between well-defined Kondo insulator and antiferromagnetic insulating state, there can exist a wide coexistence region with both Kondo screening and antiferromagnetic orders in the intermediate coupling regime. In addition, the stability of Kondo insulator requires a minimum strength of the Kondo coupling. These features are attributed to the linear density of state, which are absent in the square lattice. Furthermore, fluctuation effect beyond the mean-field decoupling is analyzed and the corresponding antiferromagnetic spin-density-wave transition falls into the O(3) universal class. Comparatively, we also discuss the Kondo necklace and the Kane-Mele-Kondo (KMK) lattice models on the same lattice. Interestingly, it is found that the topological insulating state is unstable to the usual antiferromagnetic ordered states at half-filling for the KMK model. The present work may be helpful for further study on the interplay between conduction electrons and the densely localized spins on the honeycomb lattice.  相似文献   

5.
The integrability of the one-dimensional chiral Hubbard model is discussed in the limit of strong interaction,U=. The system is shown to be integrable in the sense of the existence of an infinite number of constants of motion. The system is related to a chiral Kondo lattice model at strong interactionJ=+.  相似文献   

6.
We show within the slave-boson technique that the Anderson lattice model exhibits a Kondo breakdown quantum critical point where the hybridization goes to zero at zero temperature. At this fixed point, the f electrons experience as well a selective Mott transition separating a local-moment phase from a Kondo-screened phase. The presence of a multiscale quantum critical point in the Anderson lattice in the absence of magnetism is discussed in the context of heavy fermion compounds. This study is the first evidence for a selective Mott transition in the Anderson lattice.  相似文献   

7.
We use the variational method to investigate the ground state phase diagram of the Kondo lattice Hamiltonian for arbitraryJ/W, and conduction electron concentrationn c (J is the Kondo coupling andW the bandwidth). We are particularly interested in the question under which circumstances the globally singlet (collective Kondo) Fermi liquid type ground state becomes unstable against magnetic ordering. For the collective Kondo singlet we use the lattice generalization of Yosida's wavefunction which implies the existence of a large Fermi volume, in accordance with Luttinger's theorem. Using the Gutzwiller approximation, we derive closed-form results for the ground state energy at arbitraryJ/W andn c, and for the Kondo gap atn c=1. We introduce simple trial states to describe ferromagnetic, antiferromagnetic, and spiral ordering in the small-J (RKKY) regime, and Nagaoka type ferromagnetism at largeJ/W. We study three particular cases: a band with a constant density of states, and the (tight binding) linear chain, and square lattice periodic Kondo models. We find that the lattice enhancement of the Kondo effect, which is described in our theory of the Fermi liquid state, pushes the RKKY-to-nonmagnetic phase boundary to much smaller values ofJ/W than it was previously thought. In our study of the square lattice case, we also find a region of itinerant, Nagaoka-type ferromagnetism at largeJ/W forn c 1/3.  相似文献   

8.
We report the existence of a volume collapsed strongly mixed valent state at pressures above 65 K bars in the prototype “concentrated Kondo” system CeAl2 and discuss the relevant energy scales and general phase diagram of CeAl2. To our knowledge this is the first demonstrated example of what should be a large class of systems exhibiting the full diversity of ground states of an Anderson lattice.  相似文献   

9.
An Anderson model with N-fold degeneracy in the Kondo regime is considered. It is presumed that the electron-electron correlations in the system of f electrons have their maximum strength. A criterion for instability against the formation of a weakly antiferromagnetic phase superposed on the Kondo state is obtained by the auxiliary-boson method using the 1/N expansion. An effective interaction leading to the formation of magnetic ordering appears because of the spin fluctuations in the system of localized electrons. The phase diagram of the system is constructed. Zh. éksp. Teor. Fiz. 111, 600–614 (February 1997)  相似文献   

10.
《Physics letters. A》2001,284(6):286-293
Spin dynamics is calculated in the ferromagnetic (FM) state of the generalized Kondo lattice model taking into account strong on-site correlations between eg electrons and antiferromagnetic (AFM) exchange among t2g spins. Our study suggests that competing FM double-exchange and AFM super-exchange interaction lead to a rather nontrivial spin-wave spectrum. While spin excitations have a conventional Dq2 spectrum in the long-wavelength limit, there is a strong deviation from the spin-wave spectrum of the isotropic Heisenberg model close to the zone boundary. The relevance of our results to the experimental data are discussed.  相似文献   

11.
Studying electric, magnetic, and thermolectric properties of CexLa1–xCu2Si2 alloys we have determined the variation of two principal parameters-T k andT RKKY -with concentrationx in the range 0<x1. The magnetic phase diagram of CexLa1-xCu2Si2 alloys has been found to be similar to that proposed by Doniach for the one-dimensional Kondo-necklace model. The anomalous low temperature properties of nonmagnetic Kondon lattices, including heavy fermion superconductivity, are related to the formate of the narrow Abrikosov-Suhl resonance in the vicinity of the Fermi level in concentrated Kondo systems withT K T RKKY .  相似文献   

12.
We investigate the pairing symmetry of the Kondo-Heisenberg model on triangular lattice, which is believed to capture the core competition of Kondo screening and local magnetic exchange interaction in heavy electron compounds. On the dominant background of the heavy fermion state, the introduction of the Heisenberg antiferromagnetic interaction (J H ) leads to superconducting pairing instability. Depending on the strength of the interactions, it is found that the pairing symmetry favours an extended s-wave for small J H and high conduction electron density but a chiral \(d_{x^2 - y^2 } + id_{xy}\)-wave for large J H and low conduction electron density, which provides a phase diagram of pairing symmetry from the calculations of the ground-state energy. The transition between these two pairing symmetries is found to be first-order. Furthermore, we also analyze the phase diagram from the pairing strengths and find that the phase diagram obtained is qualitatively consistent with that based on the ground-state energy. In addition, we propose an effective single-band BCS Hamiltonian, which is able to describe the low-energy thermodynamic behaviors of the heavy fermion superconducting states. These results further deepen the understanding of the antiferromagnetic interaction which results in a geometric frustration for the model studied. Our work may provide a possible scenario to understand the pairing symmetry of the heavy fermion superconductivity, which is one of active issues in very recent years.  相似文献   

13.
Using an exact equivalence between the Kondo lattice with infinite J and the Hubbard model with infinite U, we show that the ground state of the Kondo lattice is non-magnetic for concentrations of conduction electrons close to 1, but there are still some magnetic regions even for J → ∞.  相似文献   

14.
We study the interplay between magnetic correlations of two Kondo impurities and superconducting singlet pairing. Performing a Schrieffer-Wolff transformation in the zero-bandwidth limit of the two-impurity Anderson model we obtain the Hamiltonian of two magnetic impurities and we add a superconducting term to the conduction electrons. The model allows us to study the effect of the magnetic correlation between the impurities on the superconducting ground state. At zero temperature, different superconducting ground states can be obtained depending on the magnitude of magnetic coupling between S1 and S2. For increasing coupling, the superconducting region is enlarged showing an interesting result: in the strong coupling limit, where the impurities are in a very strong ferromagnetic correlation state, half of the conduction electrons are decoupled from the local moments of the impurities and take advantage of the superconducting pairing lowering the ground state energy. On the contrary, when the coupling between S1and S2 decreases, the scenario of the two independent Kondo impurities in presence of superconductivity emerges and all the conduction electrons are involved in the pair breaking physics. At finite temperature, we obtain the phase diagram and we observe a region of parameters where the re-entrance phenomenon occurs.  相似文献   

15.
16.
A theory of stabilization of a spin liquid in a Kondo lattice at temperatures close to the temperature of antiferromagnetic instability has been developed. Kondo exchange scattering of conduction electrons leads to emergence of a state of the spin liquid of the resonating valence bonds (RVB) type at T>T K. Owing to this stabilization, low-energy processes of Kondo scattering with energies below T K are frozen so that the “singlet” state of the Kondo lattice is not realized; instead a strongly correlated spin liquid with developed antiferromagnetic fluctuations occurs. A new version of the Feynman diagram technique has been developed to describe interaction between spin fluctuations and resonant valence bonds in a self-consistent manner. Emergence of a strongly anisotropic RVB spin liquid is discussed. Zh. éksp. Teor. Fiz. 112, 729–759 (August 1997)  相似文献   

17.
The new example of a ferromagnetic Kondo lattice, CeRuPO, is a good candidate which offers the opportunity to investigate the physical properties near a ferromagnetic instability. Macroscopic experiments evidenced a Kondo temperature and Curie temperature of . We have investigated the pressure-temperature phase diagram of CeRuPO by means of electrical resistivity measurements on high quality single crystals in the temperature interval from 1.8 to 300 K. The pressure dependence of the ordering temperature follows the anticipated behavior of a Ce-based Kondo lattice system, where pressure is expected to suppress the magnetic order. The critical pressure for the suppression of the transition temperature to zero is estimated to be .  相似文献   

18.
The spin susceptibility of a polycrystalline sample of uranium mononitride UN is studied by measuring the 14N NMR line shift, spin–lattice relaxation rates of the nuclear spin, and static magnetic susceptibility in the temperature region of 1.5TN < T < 7TN A joint analysis of the results obtained has revealed the temperature dependence of the characteristic energy of spin fluctuations of the uranium 5f electrons: Γnmr(T) ∝ T0.54(4) close to the dependence Γ(T) ∝ T0.5 characteristic of concentrated Kondo systems above the coherent state formation temperature.  相似文献   

19.
Ai-Yuan Hu  Yuan Chen 《Physica A》2008,387(14):3471-3476
We study the phase diagram of the anisotropic ferromagnetic Heisenberg model on a square lattice. We use the double-time Green’s function method within the Callen decoupling approximation. The dependence of the Curie temperature Tc on the spin S and on the anisotropy parameter Δ (Δ=0 and 1 correspond to the isotropic Heisenberg and Ising model, respectively) is obtained explicitly. Our results are in agreement with results obtained from other theoretical approaches.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号