首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Physics letters. A》1996,223(4):267-272
The effects of a magnetic field on a modulated phase are studied. A modulated phase is found to have two critical fields H1 and H2. For a large enough magnetic field, H1 and H2 can be approximated by a linear law. As a result, the minimum magnetic field needed to destroy a modulated phase is a constant. The minimum magnetic field also greatly depends on the order of a commensurate phase. A very high order commensurate phase and an incommensurate phase cannot survive a magnetic field. The behaviour of a magnetoelastic chain in a magnetic field can be described by a harmless devil's staircase. The inverse temperature is found to play a role similar to that of a special magnetic field. The deeper physics underlying these new phenomena is the breaking of the left-right symmetry of a phase diagram. As a result a controllable path to a modulated phase is found.  相似文献   

2.
The phase structure of spontaneously broken scalar electrodynamics in an external electromagnetic field is analyzed. With no external field, the spectrum comprises a scalar boson of mass mH and a vector boson of mass mW. If mHmW, it is shown that in the tree approximation, as the external field is increased, a first order phase transition to a restored symmetry phase occurs, and the critical field strength is calculated. Below the critical point the external field is completely screened, this being the analogue of the Meissner effect in superconductivity. If mH > mW, a third phase, characterized by vortex solutions of the field equations, occurs. Quantum effects, such as pair production in an electric field, are considered at the one (and two) loop level in the massless theory (the Coleman-Weinberg model). The leading correction to the critical magnetic field strength is calculated, and it is shown that for an external electric field the phase transition does not exist.  相似文献   

3.
We have discovered a new magnetic phase transition between free-excitons and electron-hole drops in high purity Ge near the critical point of the liquid-gas phase diagram. The critical magnetic field is found to be Hc ≈ 0.4 T. For H?Hc the electron-hole drops are stable to higher temperatures by about 1 K with respect to zero field.  相似文献   

4.
By means of the Loschmidt Echo (LE) and Berry Phase (BP) calculations, quantum phase transition (QPT) of an XY spin chain with three-site interaction (α) in a transverse magnetic field (λ) is studied. Both the LE and BP?s λ derivative present anomaly behaviors at the critical regions λ1,λ2 and λ3. The model is in the Ferromagnetic phase as λ>λ1=1+α and in the Spin Liquid I phase as −1+α<λ<1+α. λ1 and λ2 are independent on the anisotropy parameter γ. But, the anisotropy interaction can shift the critical line λ3 between the Spin Liquid II phase and the Ferromagnetic phase. The present work suggests that QPT of the XY spin chain with three-site interaction can be characterized by exploring the dynamical behaviors of the LE and BP.  相似文献   

5.
We report here on critical analysis across magnetic phase transition and spin dynamics in Gd2CoMnO6. We found that this material behaves differently below and above the applied magnetic field of 20 kOe. The magnetic phase transition switches from nearly mean-field type to unusual class and Tc shifts towards the high temperature above 20 kOe field. The nature of the magnetic phase transition is explored by carrying out critical analysis at low as well as at high magnetic field. The critical exponents obtained at low field using Kouvel-Fisher method are β = 0.65 (2) γ = 0.90 (2), δ = 2.43 and Tc = 120 K. Apparently, these values of critical exponents appear close to mean-field model. For high field the critical exponents are β = 1.24 (2) γ = 0.64 (5), δ = 1.51 (3) and Tc = 128 K. The critical exponents show significant deviation from any universal class. This switchover in the nature of the magnetic phase transition is unique and not seen in many compounds. The formation of non-Griffiths-like clusters in this compound can be a reason for such unique behavior. Further, ac susceptibility has been measured to understand the spin dynamics in detail. The dispersion of frequency-dependent χac below Tc confirms a spin glass state in this material. The observed value of τo and To indicate the slow dynamic spin which is caused by co-existence of Co/Mn spin magnetic moments. The magneto-caloric effect is also presented for Gd2CoMnO6 in this study. The magnetic study and critical analysis across the phase transition reveal a switchover in the nature of phase transition in this material. A non-Griffiths like cluster formation above Tc is found and dynamic susceptibility study reveals a spin glass state below Tc in Gd2CoMnO6.  相似文献   

6.
In this paper, we employ a continuous Ginzburg–Landau model to study the behaviors of the parallel upper critical field of an intrinsically layered superconductor. Near Tc where the order parameter is nearly homogeneous, the parallel upper critical field is found to vary as (1−T/Tc)1/2. With a well-localized order parameter, the same field temperature dependence holds over the whole temperature range. The profile of the order parameter at the parallel upper critical field is of a Gaussian type, which is consistent with the usual Ginzburg–Landau theory. In addition, the influences of the unit cell dimension and the average effective masses on the parallel upper critical field and the associated order parameter are also addressed.  相似文献   

7.
Spontaneously broken gauge theories in a constant external electromagnetic field are shown to exhibit a first-order phase transition to a restored symmetry phase when the external field exceeds a certain critical value. The effects of fields characterized by various values of the two Lorentz invariants F1 = 12(B2 ? E2) and F2 = E · B are discussed. In a simple SU(2) model the critical field strength is found to be gR2(F1)crit = 0.057 mw4, mw being the vector boson mass. A number of theoretical developments in the background field formalism are presented. A new gauge-fixing term, the background field R gauge, is introduced. The configuration space heat kernel method for evaluating functional determinants, extended to allow the use of dimensional regularization, is employed, and it is shown how to perform background field calculations in a gauge specified by an arbitrary parameter α. Further applications of these methods are discussed.  相似文献   

8.
9.
Temperature and field-dependent magnetization measurements on polycrystalline CeMnCuSi2 reveal that the Mn moments in this compound exhibit ordering with a ferromagnetic (FM) component ordered instead of the previously reported purely antiferromagnetic (AFM) ordering. The FM ordering temperature, Tc, is about 120 K and almost unchanged with external fields up to 50 kOe. Furthermore, an AFM component (such as in a canted spin structure) is observed to be present in this phase, and its orientation is modified rapidly by the external magnetic field. The Ce L3-edge X-ray absorption result shows that the Ce ions in this compound are nearly trivalent, very similar to that in the heavy fermion system CeCu2Si2. Large thermomagnetic irreversibility is observed between the zero-field-cooled (ZFC) and field-cooled (FC) M(T) curves below Tc indicating strong magnetocrystalline anisotropy in the ordered phase. At 5 K, a metamagnetic-type transition is observed to occur at a critical field of about 8 kOe, and this critical field decreases with increasing temperature. The FM ordering of the Mn moments in CeMnCuSi2 is consistent with the value of the intralayer Mn–Mn distance RaMn–Mn=2.890 Å, which is greater than the critical value 2.865 Å for FM ordering. Finally, a magnetic phase diagram is constructed for CeMnCuSi2.  相似文献   

10.
The superconducting current in hybrid superconducting structures Nb/Au/Ca1?x Sr x CuO2/YBa2Cu3O7?δ with an antiferromagnetic layer is experimentally shown to have a Josephson nature, and the deviation from the sinusoidal dependence of the superconducting current on the phase difference between superconducting electrodes is about 20% of the second harmonic. These heterostructures are found to have sensitivity to an applied magnetic field that is much higher than that of conventional Josephson junctions. The experimental shape of the magnetic-field dependence of the critical current in the heterostructures differs from the usual Fraunhofer shape by oscillation with a significantly smaller period along a magnetic field.  相似文献   

11.
The first order magnetization process (FOMP) is associated with the irreversible rotation of the magnetization vector Ms between inequivalent states. The critical field Hcr and the amplitude ΔM of the jump observed in the direction parallel to the applied magnetic field are functions of the anisotropy constants of the crystal. A complete phenomenological analysis is given for the case of uniaxial anisotropy in terms of the first three anisotropy constants K1, K2 and K3, as well as in terms of the anisotropy coefficients χ2,0, χ4,0, χ6,0. Computer plots of the critical parameters and the magnetic phase diagram are given together with an analytical treatment of the problem. The results give a unified view of the FOMP in uniaxial crystals and provide a method for the accurate determination of the anisotropy constants at the temperatures where the phenomenon is present.  相似文献   

12.
The ground-state magnetic properties of a two-sublattice Ising metamagnet in a mixed longitudinal and transverse magnetic field are studied within the effective-field theory. A parameter j2=J2/J1 is introduced, which reflects the strength ratio of spin coupling between adjacent planes and in each plane. In addition to the second-order transition lines, the first-order transition lines are also presented, since the ground-state energy can be calculated numerically. The ground-state phase diagrams in hxhz are presented. The results show that when j2<0 the phase transition of the system is always first-order for hx<2.751, and when −1000?j2<0 it is always second-order for hx>4.36. For the given hx (0<hx<14.71), the longitudinal critical magnetic field increases as j2 decreases. The reentrant phenomenon occurs in the range of j2<−11.89, hx>14.71. There is no fourth-order critical point in the phase diagrams given by using EFT as found by using mean field theory (MFT).  相似文献   

13.
14.
The La1−xCexMn2Si2 compounds (x=0.35 and 0.45) exhibit an antiferromagnetic-ferromagnetic transition caused by the changes in distance between Mn atoms due to temperature changes. A field-induced transition from antiferromagnetic state to ferromagnetic state at a critical field, which decreases with increase in temperature, can also be induced by applying a magnetic field. In this paper our aim is to study the magnetization and magnetocaloric effect, close to transition temperatures. Our subsidiary aim is to examine the temperature dependence of critical field and ferromagnetic fraction of compounds. The variation of magnetocaloric effect with temperature is correlated with the ferromagnetic-antiferromagnetic phase coexistence. Our final aim is to examine the harmony between magnetocaloric effect values calculated both by the Maxwell theory and by the Landau theory.  相似文献   

15.
In this paper, the entanglement in a mixed-spin (1/2, 3/2) Heisenberg XXZ model with Dzyaloshinskii-Moriya (DM) interaction in an inhomogeneous external magnetic field is studied. We not only calculate the ground-state entanglement but also investigate the behaviors of quantum phase transition following the changes of DM interaction and nonuniform magnetic field. More importantly, we note that the DM interaction improves the critical magnetic field B c , the critical temperature T c and broadens the region of entanglement.  相似文献   

16.
The phase behavior at low temperature, in particular the critical and tricritical properties, of liquid 3He4He mixtures and certain types of metamagnets — a class of highly anisotropic antiferromagnets, such as FeCl2 etc. — is investigated. Since both systems exhibit two successive phase transitions, one of which is a λ-type of transition while the other is a first order transition, special attention is given to the similarity in the behavior of the two systems. In part A first the experimental and earlier theoretical work are briefly reviewed. Then the phase behavior of each system is calculated on the basis of a simple model treated in mean field approximation. The results obtained are in general qualitative agreement with experiment. For the helium mixtures an isotopic mixture of hard-spheres following Fermi and Bose statistics is used, while for the metamagnet a two sublattice spin 12 Ising model with nearest neighbor and next-nearest neighbor interactions is employed. A simple physical argument for the analogous behavior of the two models is given. In part B, in an attempt to obtain a deeper understanding of the similarity of the two systems, the Hamiltonians of the two models are extended to include symmetry breaking fields: a particle source field for the helium mixtures and a staggered magnetic field for the metamagnet. The phase diagrams and critical behavior of the two models in an extended thermodynamic space that includes the symmetry breaking fields are discussed in mean field theory.We find that although the two models (treated in the mean field approximation) are very similar, there are differences near T = 0°K and in some of the critical exponents.  相似文献   

17.
The ρ-T curves in our single phase HgBa2Ca2Cu3O8+δ superconductor were measured as a function of temperature and magnetic field, ρ=ρ0exp(−Ueff/κBT). It can be transformed to another form d(lnρ)/d(1/T)=−Ueff+TdUeff/dT, then this becomes a plot of the activation energy Ueff as a function of temperature. Our data plotted in these ways show a clear crossover from high-temperature two-dimensional vortex-liquid to a critical region associated with the low-temperature three-dimensional vortex-glass phase transition. The critical exponents v(z−1)=3.9±1.9 in this system are little different with previous measurements in BSCCO and YBCO systems.  相似文献   

18.
The critical fields of the valence transition induced by a magnetic field in the EuNi2(Si1?x Gex)2 (x=0.5–0.75) compound in an intermediate valence state are measured. The magnetic-field-induced valence transition is observed in the low-concentration range down to x=0.5. It is demonstrated that the critical field increases linearly with a decrease in the germanium concentration.  相似文献   

19.
An electric field induced phase transition in first order ferroelectrics with very large zero point energy is studied on the framework of the effective field approach. It is well known that when the zero point energy of a system is relatively large, the ferroelectric behaviour is depressed and no phase transition can be observed. The critical value Ωcf of zero point energy for whom the phase transition disappears turns out to be dependant on the order of transition. For zero point energies larger than this critical value, a phase transition may be induced applying an external electric field. This temperature dependence of the induced polarization shows a discontinuous step when the applied electric field is weak, but becoming a continuous one at a strong applied electric field. Another critical value of zero point energy Ωcp>Ωcf is deduced for which no phase transition at all can be attained.  相似文献   

20.
As predicted by Haldane, spin, S=1 one-dimensional (1D) Heisenberg antiferromagnet (HAF) has an energy gap between the singlet ground state and first excited triplet. On application of magnetic field, the triplet state Zeeman splits and the energy of one of the triplet state becomes zero at a critical field, Hc. Above Hc the system recovers magnetism. Then, we expect that a quasi-1D HAF will show a magnetic long-range ordering (LRO) at low temperatures due to the inter-chain coupling. This field-induced LRO has not been observed before due to complication of the crystal structure in the materials studied so far and/or technical difficulty.From a heat capacity measurement on a single crystal of an S=1 quasi-Q1D HAF, Ni(C5H14N2)2N3(PF6), we found an anomaly at a temperature in finite fields indicating a field-induced phase transition. A magnetic LRO is confirmed by a neutron diffraction measurement on the same sample. The temperature versus magnetic field phase diagram of this compound is constructed and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号