首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structure and magnetic properties of quaternary rare-earth intermetallic borides R3Co29Si4B10 with R=La, Ce, Pr, Nd, Sm, Gd and Dy have been studied by X-ray powder diffraction and magnetization measurements. All compounds crystallize in a tetragonal crystal structure with the space group P4/nmm. Compounds with R=La, Ce, Pr, Nd and Sm are ferromagnets, while ferrimagnetic behavior is observed for R=Gd and Dy. The Curie temperatures vary between 149 K and 210 K. The Curie temperatures in R3Co29Si4B10 (R=Ce, Pr, Nd, Sm, Gd, Dy) compounds are roughly proportional to the de Gennes factors.  相似文献   

2.
The structural stability of the intermetallic compounds R2Co17 and R2Co17T (T=Be, C) is tested by many means including random atom shifts, global deformations and high temperature disturbances under the control of the pair potentials. The structure type and crystal constants of R2Co17 and R2Co17Be are close to experimental results. The addition of Be and C in the interstice of R2Co17 causes a decrease of the cohesive energy, and Be and C only occupies the 9e interstitial site with the Th2Zn17-type structure or the 6h interstitial site with the Th2Ni17-type structure. All the above results indicate that the potentials are valid for studying the structural properties of these kinds of anisotropy materials.  相似文献   

3.
The synthesis of the Ruddlesden-Popper series, LnCa2Mn2O7, (Ln=Pr, Nd, Sm and Gd) is described and their structure and electronic properties investigated. The reduction in size of the A-site cation causes an increase in the distortion of their orthorhombic structures (space group Cmcm). All of these compounds form with a perovskite impurity, the amount of which increases on reduction of the cation size. The synthesis temperature also alters the amount of perovskite impurity in the phase, but only to a lower limit, implying the perovskite phase is intrinsic to the material and that a phase equilibrium exists between the layered Ruddlesden-Popper and perovskite phases, which is controlled by the cation size. The magnetic susceptibility show transitions characteristic of the perovskite phase, therefore little direct information can be obtained about the Ruddlesden-Popper phases, except that ferromagnetism is not observed in any of these materials.  相似文献   

4.
The RPdIn compounds (R = rare earth) crystallise in the hexagonal ZrNiAl-type crystal structure. The compounds from this family exhibit a great variety of interesting magnetic properties including heavy fermion behaviour. In order to get a deeper insight into nature of magnetism of RPdIn with light rare earths elements (La–Nd) an inelastic neutron scattering experiment was performed. For compounds with Pr and Nd excitations due to crystal field were clearly distinguished. On the other hand, interesting behaviour for the CePdIn sample was observed. The sample exhibits no signs of crystal field excitations, likely due to highly delocalised Ce 4f states leading to its heavy fermion behaviour.  相似文献   

5.
TmCu2Ge2 compound crystallizes in the tetragonal ThCr2Si2-type crystal structure. The neutron diffraction reveals the presence of an incommensurate antiferromagnetic order below TN=2.5 K. The Tm magnetic moment of 5.0(1) μB at 0.47 K is parallel to the c-axis. The order is described by the propagation vector k=[kx, kx, 0], where kx=0.117(3). The increase of the values of the components kx near the Néel temperature is observed.  相似文献   

6.
The magnetic and magnetocaloric properties of the R6Mn23 compounds (R=Y, Nd, Sm, Gd-Tm, Lu) are investigated from DC magnetization measurements. The results are analyzed and discussed in connection with previously published data. These binaries crystallize in the cubic Th6Mn23 type of structure (Fm-3m). The Mn sublattice orders at high temperature (398 K≤TC≤505 K) with a collinear ferrimagnetic structure. The R sublattice orders at lower temperature (<100 K) with a non-collinear arrangement. By opposition with the usual behaviour in intermetallics, light rare-earth compounds (R=Nd and Sm) have a lower ground state magnetization than the heavy rare-earth compounds (R=Gd-Tm). This manifests in their magnetocaloric response near the R ordering temperature: the compounds with R=Gd-Tm display a normal magnetocaloric effect of moderate magnitude (<50 mJ cm−3 K−1 for a field variation of 5 T) while those with R=Nd and Sm present an inverse magnetocaloric effect of weaker magnitude. The potential interest of these phases for cooling applications is briefly discussed.  相似文献   

7.
A number of compounds of structural formula RRu4Sn6 (R=rare-earth element) have previously been reported to form in the tetragonal crystal structure with space group I4¯2m. In this structure the R atoms are well isolated from each other. We embarked on this study to investigate the physical properties and to compare with earlier results obtained on the strongly correlated, low charge-carrier density compound CeRu4Sn6. Here we report our results of crystallographic, electrical resistivity, and magnetic studies on this family of compounds. In contrast to the behaviour in CeRu4Sn6, magnetic ordering is evident at low temperatures in the compounds with R=Sm, Gd, and Dy, as is evidenced by well-resolved anomalies in the temperature dependence of the electrical resistivity and static magnetic susceptibility.  相似文献   

8.
A Y2Fe15Cr2 single crystal with the Th2Ni17-type structure has been prepared by the Czochralski method and investigated by means of Laue back-reflection, metallographic observation, X-ray diffraction, the singular point detection technique and magnetic measurements. A magnetohistory effect has been observed at a low temperature. Magnetization curves have been measured along the easy and hard directions in fields up to 6.5 T. The saturation magnetization and magnetocrystalline anisotropy field decrease with increasing temperature. The experimental magnetocrystalline anisotropy constant is in good agreement with the calculation results on first approximation.  相似文献   

9.
The phase structure, microstructure, piezoelectric properties, dielectric characteristic and the ME effect of magnetoelectric Pb[Zr0.23Ti0.36+0.02(Mg1/2W1/2)+0.39(Ni1/3Nb2/3)]O3 (PZT)+xNi0.8Co0.1Cu0.1Fe2O4 (NCCF) composite ceramics were prepared by the conventional solid state reaction method. The structural analysis of both the constituent phases and their composites was carried out by X-ray diffraction, energy dispersive spectrometry and scanning electron microscopy. The results showed cubic spinel structure for ferrite phase and tetragonal perovskite structure for ferroelectric phase. The piezoelectric constant, dielectric constant, Curie temperature, remanent polarization and coercive electric field decreased with increase of ferrite content. The coercive field strength, saturation magnetization and remanent magnetization increased with increasing ferrite content.  相似文献   

10.
The magnetic properties of the ferrimagnetic cobaltite CaBaCo4O7 are systematically investigated. We find that the susceptibility exhibits a downward deviation below ∼360 K, suggesting the occurrence of short-range magnetic correlations at a temperature well above TC. The effective moment is determined to be ., which is consistent with that expected for the Co2+/Co3+ high spin species. Using a criterion given by Banerjee [Phys. Lett. 12 (1964) 16], we demonstrate that the paramagnetic to ferrimagnetic transition in CaBaCo4O7 has a first order character.  相似文献   

11.
Polycrystalline sample of ErFe2Ge2 was investigated by means of magnetic susceptibility, heat capacity and electrical resistivity measurements, as well as by powder neutron diffraction. All these experiments yielded an evidence of magnetic ordering setting at about 3 K. The low-temperature neutron data revealed the formation of a sine-modulated commensurate antiferromagnetic structure characterized by the propagation vector k=(0, 0, ). The erbium magnetic moment is aligned parallel to the crystallographic a-axis. At T=1.55 K it is equal to 7.06(5) μB.  相似文献   

12.
Self consistent charge and spin polarized local spin-density approximation functional theory calculations based on the discrete variational method have been performed for RCo5(R=Y, La, Ce, Pr, Nd, Sm, Gd, and Tb) compounds. The partial density of states of the Pr atom in the PrCo6Co12 cluster is established to be strikingly similar to that of the Ce atom in the CeCo6Co12 cluster, supporting the suggestion that the Pr atom is valence fluctuating. The radii <r4f> and <r4f2> of the 4f electrons of the R atom from La to Tb, except Ce, show the lanthanide contraction. The crystalline electric field (CEF) parameter A02 at the R site is calculated using a real charge distribution ρ(R) in the cluster, except for Pr and Nd, and is in agreement with that evalu ated based on the single-ion model. This result shows that the CEF parameter A02 is mainly determined by the near electronic structure. There exists a hybridization in a certain degree between the light rare-earth R-4f and Co-3d orbitals in some single-electron-molecular-orbitals, which are n ear the Fermi energy level and occupied by electrons. For light rare-earths the R-4f electrons in R Co6Co12(R=Y, La, Ce, Pr, Nd, and Sm) clu sters are not localized entirely and a small amount of the R-4f electrons have itinerant properties.  相似文献   

13.
Calcium lanthanide oxyborate doped with rare-earth ions LnCa4O(BO3)3:RE3+ (LnCOB:RE, Ln=Y, La, Gd, RE=Eu, Tb, Dy, Ce) was synthesized by the method of solid-state reaction at high temperature. Their fluorescent spectra were measured from vacuum ultraviolet (VUV) to visible region at room temperature. Their excitation spectra all have a broadband center at about 188 nm, which is ascribed to host absorption. Using Dorenbos’ and Jφrgensen's work [P. Dorenbos, J. Lumin. 91 (2000) 91, R. Resfeld, C.K. Jφrgensen, Lasers and Excite States of Rare Earth [M], Springer, Berlin, 1977, p. 45], the position of the lowest 5d levels E(Ln,A) and charge transfer band Ect were calculated and compared with their excitation spectra.Eu3+ and Tb3+ ions doped into LnCOB show efficient luminescence under VUV and UV irradiation. In this system, Ce3+ ions do not show efficient luminescence and quench the luminescence of Tb3+ ions when Tb3+ and Ce3+ ions are co-doped into LnCOB. GdCOB doped with Dy3+ shows yellowish white light under irradiation of 254 nm light for the reason that Gd3+ ions transfer the energy from itself to Dy3+. Because of the existence of Gd3+, the samples of GdCOB:RE3+ show higher excitation efficiency than LaCOB:RE3+ and YCOB:RE3+, around 188 nm, which indicates that the Gd3+ ions have an effect on the host absorption and can transfer the excitation energy to the luminescent center such as Tb3+, Dy3+ and Eu3+.  相似文献   

14.
Magnetization of the RCo12B6 borides (R=Y, Ce, Pr, Nd, Sm, Gd and Dy), which crystallize in a rhombohedral structure of the SrNi12B6-type, has been measured in the temperature range 4.2–300 K. All compounds were found to order magnetically with Curie temperatures ranging from 154 to 177 K. Saturation moments at 4.2 K were found to be 6.5, 5.4, 8.4, 8.8, 6.8, 2.1 and 5.9μB/f.u. for R=Y, Ce, Pr, Nd, Sm, Gd and Dy, respectively. These results imply a ferromagnetic coupling of Co and rare earth moments for light rare earths and an antiferrimagnetic coupling for heavy rare earths in these compounds. A spin-compensation effect is observed in GdCo12B6 alloys at Tcomp=46 and 72 K, respectively. Results suggest that in CeCo12B6 the Ce ion exists in the quadripositive state. It is clear that RCo12B6 materials are not of interest for permanent magnet applications.  相似文献   

15.
We have studied RNiGe3 (R=Y, Ce-Nd, Sm, Gd-Lu) single crystals by measuring crystal structure and stoichiometry, magnetic susceptibility, magnetization, electrical resistivity, magnetoresistance, and specific heat. Clear anisotropies as well as antiferromagnetic ordering in the RNiGe3 series (R=Ce-Nd, Sm, Gd-Tm) have been observed above 1.8 K from the magnetic susceptibility. A metamagnetic transition in this family (except for R=Sm) was detected at 2 K for applied magnetic fields below 70 kOe. The electrical resistivity of this series follows metallic behavior in the high temperature region. Below the antiferromagnetic ordering temperature a significant anisotropy is exhibited in the resistivity and magnetoresistance for different current directions. The anisotropic magnetic, transport, and thermal properties of RNiGe3 compounds are discussed in terms of Ni site occupancy as well as a combination of the effect of formation of a magnetic superzone gap and the crystalline electric field.  相似文献   

16.
The electronic density of states (DOS) and magnetic moments of rare-earth antimonides (RCrSb3) have been studied by the first principles full-potential linearized augmented plane wave (FP-LAPW) method based on density functional theory (DFT). For the exchange-correlation potential, the LSDA+U method is used. The effective moments of LaCrSb3, CeCrSb3, NdCrSb3, GdCrSb3, and DyCrSb3 were found to be , , , and respectively. The exchange-splittings of Cr-3d state electrons and 4f-states of rare earth elements were analyzed to explain the magnetic nature of these systems. The Cr atom plays a significant role on the magnetic properties due to the hybridization between Cr-3d and Sb-5p state orbitals. The results obtained are compared and found to be in close agreement with the available data.  相似文献   

17.
The thermal and magnetothermal properties of La0.5Pr0.5Mn2Si2 and isostructural LaFe2Si2 intermetallic compounds in the temperature range 4.5-303 K are reported with and without applied magnetic field. The electronic, lattice, and magnetic contributions to the heat capacity of La0.5Pr0.5Mn2Si2 are determined and analyzed. We have determined and from heat capacity experiments; the values are in line with those from the magnetization measurements. We conclude that in order to observe the anomaly in the heat capacity data around in the system, the transition around should occur in a narrow temperature interval.  相似文献   

18.
Single crystal X-ray diffraction data indicate that the R2Co3Zn14 (R=Gd, Y) phase crystallizes non-stoichiometrically with a mixed occupancy of Co/Zn atoms on the 12-coordinated transition metal site and one of the three zinc sites. The crystals are rhombohedral with R-3m space group. Magnetization measurements provide no evidence of localized 3d electron moment in Y2Co2.3Zn14.7 which is non-magnetic down to 1.8 K. Thermodynamic and transport measurements on two Gd2Co3+xZn14−x crystals reveal that the extra cobalt influences temperature below which the samples enter into an antiferromagnetic state: TN=31.5(3) K for Gd2Co3Zn14 and 28(1) K for Gd2Co4.2Zn12.8. A lower magnetic ordering temperature of Tmag=6.0(2) K is common in both Gd samples.  相似文献   

19.
Anisotropic (Sm,Pr)Co5/Co nanocomposite particles have been fabricated by chemical coating the 2 h ball milled (Sm,Pr)Co5 flakes with Co nanoparticles. The Co nanoparticles were synthesized with mean particle sizes in the range of 20-50 nm. The nanocomposite particles present [0 0 1] out-of-plane texture and improved magnetic properties, e.g., an enhanced remanent magnetization of 72 emu/g for (Sm,Pr)Co5/Co and 66 emu/g for (Sm,Pr)Co5. In addition, by using the 8 h ball milled powders (much smaller than the 2 h ball milled powders) as the starting materials, Co nanoparticles can also be successfully coated on the surface of the flakes. A plausible mechanism for the formation of Co nanoparticles on the surface of (Sm,Pr)Co5 flakes is discussed.  相似文献   

20.
A series of R2Fe17 (R=Sm, Gd, Tb, Dy, Er) have been synthesized. The magnetocaloric effect (MCE) of these compounds has been investigated by means of magnetic measurements in the vicinity of their Curie temperature. The Curie temperature of Er2Fe17 is 294 K. The maximum magnetic entropy change of Er2Fe17 under 5 T magnetic field is ∼3.68 J/kg K. In the R2Fe17 (R=Sm, Gd, Tb, Dy, Er) system, the maximum magnetic entropy change under 1.5 T magnetic field is 1.72, 0.89, 1.32, 1.59, 1.68 J/kg K corresponding to their Curie temperature (400, 472, 415, 364, 294 K), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号