首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The luminescent properties of Eu3+ and Eu2+ ions in sodium pyrophosphate, Na4P2O7, have been studied. The excitation spectrum of the Eu3+ emission in Na4P2O7 consists of several sets of bands in the range 280–535 nm due to 4f–4f transitions of Eu3+ ions and a broad band with a maximum at about 240 nm interpreted to be due to a charge transfer (CT) transition from oxygen 2p states to empty states of the Eu3+ 4f6-configuration. Although the CT band energy is large enough, the quantum efficiency (η) of the Eu3+ emission in Na4P2O7 under CT excitation was estimated to be very low (η ≤ 0.01). In terms of a configurational coordinate model, this fact is interpreted as a result of the high efficiency of a radiationless relaxation from the CT state to the 7F0 ground state of Eu3+ ions occupying sodium sites in Na4P2O7. A strong reducing agent is required in order to stabilize Eu2+ ions in Na4P2O7 during the synthesis. Several nonequivalent Eu2+ luminescence centers in Na4P2O7 were found.  相似文献   

2.
A series of solid solutions with a general formula of Ca2(1-x)Sr2xAl2SiO7:Eu2+ were synthesized by a high temperature solid state reaction. The structure, diffuse reflection spectra, photoluminescence spectra, color-coordinate parameters and lifetimes of phosphors were investigated. XRD results show that Ca2Al2SiO7 is totally miscible with Sr2Al2SiO7. These solid solution phosphors show a broad excitation band of 350–450 nm that matches well with the output lights of near-UV LEDs and tunable emission from bluish green to yellowish green. These optical properties originate from the 4f7–4f65d transition of Eu2+ ions. The crystal field strength was considered to be tailed by controlling the host composition, which leads to the shift of absorption band and emission band, and the varying of color coordinates. PACS  78.55.-m; 42.70.-a; 61.05.C-  相似文献   

3.
We have studied the effect of doping with Eu2+ and Ce3+ ions on the photoluminescence (PL) of BaGa2Se4 crystals in the temperature range 77–300 K. We have established that the broad bands with maxima at wavelengths 456 nm and 506 nm observed in the photoluminescence spectra of BaGa2Se4:Ce3+ crystals are due to intracenter transitions 5d → 2F7/2 and 5d →2F5/2 of the Ce3+ ions, while the broad photoluminescence band with maximum at 521 nm in the spectrum of BaGa2Se4:Eu2+ is associated with 4f6 5d → 4f7 (8S7/2) transitions of the Eu2+ ion. We show that in BaGa2Se4:Eu2+,Ce3+ crystals, excitation energy is transferred from the Ce3+ ions to the Eu2+ ions.  相似文献   

4.
This paper reports on the photoluminescence (PL) and time-resolved properties of Ce3+, Eu3+, and Tb3+ in novel LiSr4(BO3)3 powder phosphors. Ce3+ shows an emission band peaking at 420 nm under 350-nm UV excitation. Energy transfer from Ce3+ to Mn2+ takes place in the co-doped samples. Eu3+ shows red emission under near UV excitation. LiSr4(BO3)3:Eu3+ phosphor could be a suitable candidate for phosphor-converted solid state lighting. The luminescence lifetime is 2.13 ms for Eu3+ in LiSr4(BO3)3:0.001Eu3+. As Eu3+ concentration increasing, the decay curves deviate from exponential behavior. Tb3+ shows the strongest 5D47 F5 emission line at 540 nm. Decay curves of 5D47 F5 and 5D37 F5 emission with different Tb3+ concentrations were also measured. Cross-relaxation process is discussed based on the decay curves.  相似文献   

5.
SrMoO4 doped with rare earth are still scarce nowadays and have attracted great attention due to their applications as scintillating materials in electro-optical like solid-state lasers and optical fibers, for instance. In this work Sr1−xEuxMoO4 powders, where x = 0.01; 0.03 and 0.05, were synthesized by Complex Polymerization (CP) Method. The structural and optical properties of the SrMoO4:Eu3+ were analyzed by powder X-ray diffraction patterns, Fourier Transform Infra-Red (FTIR), Raman Spectroscopy, and through Photoluminescent Measurements (PL). Only a crystalline scheelite-type phase was obtained when the powders were heat-treated at 800 °C for 2 h, 2θ = 27.8° (100% peak). The excitation spectra of the SrMoO4:Eu3+Em. = 614 nm) presented the characteristic band of the Eu3 + 5L6 transition at 394 nm and a broad band at around 288 nm ascribed to the charge-transfer from the O (2p) state to the Mo (4d) one in the SrMoO4 matrix. The emission spectra of the SrMoO4:Eu3+ powders (λExc. = 394 and 288 nm) show the group of sharp emission bands among 523–554 nm and 578–699 nm, assigned to the 5D17F0,1and 2 and 5D07F0,1,2,3 and 4, respectively. The band related to the 5D07F0 transition indicates the presence of Eu3+ site without inversion center. This hypothesis is strengthened by the fact that the band referent to the 5D07F2 transition is the most intense in the emission spectra.  相似文献   

6.
We have studied photoluminescence and thermoluminescence (PL and TL) in CaGa2Se4:Eu crystals in the temperature range 77–400 K. We have established that broadband photoluminescence with maximum at 571 nm is due to intracenter transitions 4f6 5d–4f7 (8S7/2) of the Eu2+ ions. From the temperature dependence of the intensity (log I–103/T), we determined the activation energy (E a = 0.04 eV) for thermal quenching of photoluminescence. From the thermoluminescence spectra, we determined the trap depths: 0.31, 0.44, 0.53, 0.59 eV. The lifetime of the excited state 4f6 5d of the Eu2+ ions in the CaGa2Se4 crystal found from the luminescence decay kinetics is 3.8 μsec. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 76, No. 1, pp. 112–116, January–February, 2009.  相似文献   

7.
Powder samples of NaMgPO4 doped with Eu2+ and Ce3+ were prepared and their photoluminescence spectra were systemically studied. Energy transfer from Ce3+ to Eu2+ in NaMgPO4 phosphor was observed by investigating the optical properties from photoluminescence spectra in Eu2+ or Ce3+ singly doped and Eu2+–Ce3+ codoped sodium magnesium orthophosphates, NaMgPO4. The enhancement of UV excitation is attributed to energy transfer from Ce3+ to Eu2+, and Ce3+ plays a role as a sensitizer. Ce3+–Eu2+ codoped NaMgPO4 phosphors in which Eu2+ can be efficiently excited by 390 nm are potential candidates for phosphor-converted LEDs.  相似文献   

8.
The Dy3+ and Eu3+ activated K3Al2 (PO4)3 phosphors were prepared by a combustion synthesis. From a powder X-ray diffraction (XRD) analysis the formation of K3Al2 (PO4)3 was confirmed. In the photoluminescence emission spectra, the K3Al2(PO4)3:Dy3+ phosphor emits two distinctive colors: blue and yellow whereas K3Al2(PO4)3:Eu3+ emits red color. Thus the combination of colors gives BYR (blue–yellow–red) emissions can produce white light. These phosphors exhibit a strong absorption between 340 and 400 nm which suggest that present phosphor is a promising candidate for producing white light-emitting diodes (LED).  相似文献   

9.
Photoluminescence studies of pure and Dy3+, Eu3+ doped Sr2CeO4 compounds are presented by oxalate precipitation method for solid state lighting. The prepared samples also characterized by XRD, SEM (EDS) and FTIR spectroscopy. The pure Sr2CeO4 compound displays a broad band in its emission spectrum when excited with 280 nm wavelength, which peaks centered at 488 nm, which is due to the energy transfer between the molecular orbital of the ligand and charge transfer state of the Ce4+ ions. Emission spectra of Sr2CeO4 with different concentration of Dy3+ ions under near UV radiation excitation, shows that intensity of luminescence spectra is found to be affected by Dy3+ ions, and it increases with adding some percentages of Dy3+ ions. The maximum doping concentration for quenching is found to be Dy3+?=?0.2 mol % to Sr2+ions. The observed broad spectrum from 400 to 560 nm is mainly due to CT transitions in Sr2CeO4 matrix and some fractional contribution of transitions between 4F9/26H15/2 of Dy3+ ions. Secondly the effect of Eu3+ doping at the Sr2+ site in Sr2CeO4, have been studied. The results obtained by doping Eu3+ concentrations (0.2 mol% to 1.5 mol%), the observed excitation and emission spectra reveal excellent energy transfer between Ce4+ and Eu3+. The phenomena of concentration quenching are explained on the basis of electron phonon coupling and multipolar interaction. This energy transfer generates white light with a color tuning from blue to red, the tuning being dependent on the Eu3+ concentration. The results establish that the compound Sr2CeO4 with Eu3+?=?1 mol% is an efficient “single host lattice” for the generation of white lights under near UV-LED and blue LED irradiation. The commission internationale de I’Eclairage (CIE) coordinates were calculated by Spectrophotometric method using the spectral energy distribution of prepared phosphors.  相似文献   

10.
Nanorods and nanoplates of Y2O3:Eu3+ powders were synthesized through the thermal decomposition of the Y(OH)3 precursors using a microwave-hydrothermal method in a very short reaction time. These powders were analyzed by X-ray diffraction, field emission scanning electron microscopy, Fourrier transform Raman, as well as photoluminescence measurements. Based on these results, these materials presented nanoplates and nanorods morphologies. The broad emission band between 300 and 440 nm ascribed to the photoluminescence of Y2O3 matrix shifts as the procedure used in the microwave-hydrothermal assisted method changes in the Y2O3:Eu3+ samples. The presence of Eu3+ and the hydrothermal treatment time are responsible for the band shifts in Y2O3:Eu3+ powders, since in the pure Y2O3 matrix this behavior was not observed. Y2O3:Eu3+ powders also show the characteristic Eu3+ emission lines at 580, 591, 610, 651 and 695 nm, when excited at 393 nm. The most intense band at 610 nm is responsible for the Eu3+ red emission in these materials, and the Eu3+ lifetime for this transition presented a slight increase as the time used in the microwave-hydrothermal assisted method increases.  相似文献   

11.
Undoped and PbNb2O6:Eu3+ (1.0 ≤ x ≤ 6.0 mol%) phosphors were synthesized at 1100 °C for 3.5 h by the conventional solid state reaction method. Synthesized PbNb2O6:Eu3+ phosphors were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive spectroscopy (EDS) and Photoluminescence (PL) analyses. The PL spectra showed series of excitation peaks between 350 and 430 nm due to the 4f–4f transitions of Eu3+. For 395.0 nm excitation, emission spectra of Eu3+ doped samples were observed at 591 nm (orange) and 614 nm (red) due to the 5D0 → 7F1 transitions and 5D0 → 7F2 transitions, respectively. PL analysis results also showed that the emission intensity increased by increasing Eu3+ ion content. No concentration quenching effect was observed. The CIE chromaticity color coordinates (x,y) of the PbNb2O6:Eu3+ phosphors were found to be in the red region of the chromaticity diagram.  相似文献   

12.
The Er3+ -Yb3+ codoped in Li2O content tungsten -tellurite (TWL) transparent glasses are synthesized and measured the absorption, Raman and upconversion luminescence (UPL) spectra. At room temperature intense green emission peak at 560 nm ( 4S3/24I15/2) and red emission peak at 670 nm ( 4F9/24I15/2) of Er3+ observed even at minimum 86 mW pumping power of infrared 980 nm excitation. For structure of the TWL glass, Raman spectrum result revealed that an important role of WO3 in the formation of glass network linkage with Li2O. Under this influence estimated lifetime of the 4I11/2 of Er3+ was 1.89 μs and due to lower phonon energy of the glass produce strong upconversion signal. The effect of Er2O3 concentration on emission intensity result indicated that green emission intensity initially increase in compare to red emission. Under the 980 nm pump power variation measured the relatively increases the red emission to the green emission intensity and analyze the possible upconversion mechanism and process.  相似文献   

13.
YAlO3: Sm3+ phosphor has been synthesized by the solid state reaction method with calcium flouride used as a flux. The resulting YAlO3: Sm3+ phosphor was characterized by X-ray diffraction (XRD) technique, Fourier transmission infrared spectroscopy (FTIR), photoluminescence . . PL excitation spectrum was found at 254,332,380,400,407, 603 and 713 nm. Under excitation of UV(713 nm) YAlO3: Sm3+ (0–3 %) broad band emission were observed from 400 to 790 nm with a maximum around 713 nm of YAlO3 host lattice accompanied by weak emission of Sm3+ (4G5/26H5/2, 6H7/2,6H9/2) transitions. The results of the XRD show that obtained YAlO3: Sm3+ phosphor has a orthorhombic structure. The study suggested that Sm3+ doped phosphors are potential luminescence material for laser diode pumping and inorganic scintillators.  相似文献   

14.
Undoped and Eu3+ doped BaTa2O6 phosphors were synthesized via solid state reaction method and characterized by using XRD, SEM-EDS and photoluminescence (PL) analyses. The XRD results revealed that the crystal structure of BaTa2O6 allowed up to 10 mol% levels of Eu3+ ions due to the TTB characteristic network of adjacent octahedrals. SEM-EDS analyses confirmed the formation of BaTa2O6 structure and EuTaO4 secondary phase. BaTa2O6:Eu3+ phosphors exhibited orange and red emissions at 592.2 nm and 615.7 nm in the visible region respectively. The Commission Internationale d’Eclairage (CIE) chromaticity coordinates of the BaTa2O6:Eu3+ phosphors that excited at λ ex = 400 nm ranged from orangish-red to pinkish-red depending on increasing Eu3+ concentration.  相似文献   

15.
Eu3+-doped (La, Ln) PO4 (Ln = Gd and Y) phosphors were prepared by a facile co-precipitation method. Their structures and luminescent properties under UV excitation were investigated. Structural characterization of the nanostructured luminescence material was carried out with X-ray powder diffraction analysis. Scanning electron microscopy was carried out to understand the surface morphological features and grain sizes with 50–100 nm. It is found that (La, Gd) PO4:Eu3+ phosphors have the same crystal structure as LaPO4:Eu3+, which is monoclinic with a little different lattice parameters. In the case of (La, Y) PO4:Eu3+ phosphors, however, the gradual change from monoclinic to tetragonal structure of host lattice was observed, as the amount of Y ion increased. From the photoluminescence spectra for (La, Ln) PO4:Eu3+ (Ln = Gd and Y), the emission transition 5D0 → 7F1 has been found to be more prominent over the normal red emission transition 5D0 → 7F2. Furthermore, the size influence on the products was discussed. It was observed that the spectral features possess sharp and bright emission for potential applications on the monitors of the television and some other related electronic systems, in observing the images in orange–red color.  相似文献   

16.
Tricalcium aluminate doped with Eu3+ was prepared at furnace temperatures as low as 500°C by using the convenient combustion route and examined using powder X-ray diffraction, scanning electron microscope and photoluminescence techniques. A room-temperature photoluminescence study showed that the phosphors can be efficiently excited by UV/Visible region, emitting a red light with a peak wavelength of 616 nm corresponding to the 5D07F2 transition of Eu3+ ions. The phosphor exhibits three thermoluminescence (TL) peaks at 195°C, 325°C and 390°C. Electron Spin Resonance (ESR) studies were carried out to study the defect centres induced in the phosphor by gamma irradiation and also to identify the defect centres responsible for the TL process. Room-temperature ESR spectrum of irradiated phosphor appears to be a superposition of three distinct centres. One of the centres (centre I) with principal g-value 2.0130 is identified as O ion while centre II with an axially symmetric principal values g =2.0030 and g =2.0072 is assigned to an F+ centre (singly ionized oxygen vacancy). O ion (hole centre) correlates with the TL peak at 195°C and the F+ centre (electron centre), which acts as a recombination centre, is also correlated to the 195°C TL peak. F+ centre further appears to be related to the high temperature peak at 390°C. Centre III is also assigned to an F+ centre and seems to be the recombination centre for the TL peak at 325°C.  相似文献   

17.
Solid and hollow YF3:Eu3+ spheres assembled by nanorods have been successfully synthesized via a facile arginine-assisted hydrothermal method and followed by a subsequent heat-treatment process. The experimental results reveal that the as-prepared YF3:Eu3+ spheres are composed of the nanorods with a diameter of 20–50 nm and a length of 200–500 nm, the morphologies of YF3:Eu3+ have been changed from solid to hollow spheres assembled by nanorods. With increase of hydrothermal temperature and time, the diameter of YF3:Eu3+ spheres can be controlled from 300 to 800 nm. The solid and hollow spheres show an intense orange red emission peak near 595 nm, corresponding to the 5D0 → 7F1 transition of Eu3+. The possible formation mechanism for the hollow spheres has been presented in detail. This amine acid-assisted method is very simple, economic and environmental friendly for organic-free solvent, which would be potentially used in synthesizing other hollow materials.  相似文献   

18.
The absorption spectra, fluorescence spectrum and fluorescence decay curve of Nd3+ ions in CaNb2O6 crystal were measured at room temperature. The peak absorption cross section was calculated to be 6.202×10−20 cm2 with a broad FWHM of 7 nm at 808 nm for E//a light polarization. The spectroscopic parameters of Nd3+ ions in CaNb2O6 crystal have been investigated based on Judd-Ofelt theory. The parameters of the line strengths Ω t are Ω 2=5.321×10−20 cm2,Ω 4=1.734×10−20 cm2,Ω 6=2.889×10−20 cm2. The radiative lifetime, the fluorescence lifetime and the quantum efficiency are 167 μs, 152 μs and 91%, respectively. The fluorescence branch ratios are calculated to be β 1=36.03%,β 2=52.29%,β 3=11.15%,β 4=0.533%. The emission cross section at 1062 nm is 9.87×10−20 cm2.  相似文献   

19.
Yb3+:GdAl3(BO3)4 (hereafter Yb3+:GAB) crystals with large sizes and good optical quality have been grown by the top-seed solution growth (TSSG) method. The polarized absorption and emission spectra have been investigated at room temperature. For the σ-polarization, the intensities of both absorption and emission spectra are stronger than those for the π-polarization, the σ-absorption cross section of Yb3+ in GAB being 3.43×10-20 cm2 at 977 nm, and the σ-emission cross section being 0.98×10-20 cm2 at 1045 nm. The fluorescence lifetime of the 2 F 5/22 F 7/2 transition was measured to be 800 μs in the 5% doped sample used for our laser experiments, 993 μs in a 10% doped sample and 569 μs in a 0.5% doped sample. The laser parameters were estimated as: βmin=0.022, Isat=10.4 kW/cm2 and Imin=0.23 kW/cm2. About 0.4 W laseroutput at the wavelength of 1043 nm was achieved when the Yb3+:GAB crystal was pumped by a 974 nm laser diode, with 27.4% slope efficiency. PACS 42.55.-f; 42.70.Hj; 78.20.-e; 81.10.Dn  相似文献   

20.
Spectral-luminescent properties of Eu2+ ions in alkaline earth dilithiosilicates of composition MLi2SiO4 (M = Ca, Sr, Ba) have been studied at 77 K. The reasons for the different positions of the Eu2+ 4f 65 d → 4f 7 emission band maximum in spectra of MLi2SiO4 were found based on the obtained results. It was shown that the increase in the decay time of the Eu2+ emission on going from CaLi2SiO4 (0.41μs) through BaLi2SiO4 (0.64 μs) to Sr-silicate (1.11μs) correlates with the shift of the emission maximum to longer wavelengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号