首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The magnetic properties of polycrystalline PrRh2Si2 sample have been investigated by neutron diffraction measurements. Antiferromagnetic transition with an anomalously high ordering temperature (TN∼68 K) is clearly observed in magnetic susceptibility, specific heat, electrical resistivity and neutron diffraction measurements. Neutron diffraction study shows that Pr3+ ions carry an ordered moment of 2.99(7)μB/Pr3+ and align along the crystallographic±c-directions for the ions located at the (0,0,0) and positions. The magnetoresistance at 2 K and 10 T is rather large (∼35%).  相似文献   

2.
We investigated the magnetic and electronic properties of an antiferromagnet and pressure-induced superconductor CePd5Al2 by measuring the magnetization and de Haas-van Alphen effect, together with the electrical resistivity under pressure and magnetic field. Magnetic measurements including the high field magnetization at 1.3 K reveal several magnetic transitions and quite complex magnetic phase diagram of this compound. Electrical resistivity measurements have been performed using diamond anvil cell up to 12 GPa for the magnetic fields and [1 0 0]. The upper critical field in superconductivity is anisotropic between and [1 0 0] in the tetragonal structure, reflecting the quasi-two dimensional electronic state.  相似文献   

3.
The thermal and magnetothermal properties of La0.5Pr0.5Mn2Si2 and isostructural LaFe2Si2 intermetallic compounds in the temperature range 4.5-303 K are reported with and without applied magnetic field. The electronic, lattice, and magnetic contributions to the heat capacity of La0.5Pr0.5Mn2Si2 are determined and analyzed. We have determined and from heat capacity experiments; the values are in line with those from the magnetization measurements. We conclude that in order to observe the anomaly in the heat capacity data around in the system, the transition around should occur in a narrow temperature interval.  相似文献   

4.
5.
6.
7.
8.
Magnetic susceptibility obtained from magnetization measurement (for fields H=0.1 and 1.0 T) of polycrystalline Eu2Ti2O7 shows two distinct features. Firstly, increases on cooling below 300 K and attains a temperature-independent constant value at 68 K (Tmax). Secondly, shows an antiferromagnetic increase below 4.9±0.1 K. The former behavior is explained by crystal field (CF) theory. CF levels and wave functions of ground and excited states are determined accurately from analyses of and earlier reported Mössbauer and optical spectra. Analysis of vs. 1/T curve at low temperatures gives the classical nearest-neighbor exchange interaction Jcl=−0.76 K and a weak dipolar interaction Dnn=0.0056 K. CP of polycrystalline sample of Eu2Ti2O7 and Y2Ti2O7 are measured between 1.8-35 and 1.8-120 K respectively and θD vs. T (K) curves are calculated. At 4 K, θD of Eu2Ti2O7 shows a kink and dCP/dT curve show a maximum. Optical results show energy exchange between Eu3+ ions at intrinsic and extrinsic (defect) sites via super-exchange interaction at low temperature which may account for the observed anomalous behavior of and CP.  相似文献   

9.
Magneto-structural correlations in Pr0.15Gd0.85Mn2Ge2 have been studied by synchrotron diffraction in the temperature range between 11 and 300 K. This compound crystallizes in the ThCr2Si2-type structure (space group ). The unit cell parameters a and c were determined by Rietveld refinements as a function of temperature. Anomalies in the temperature dependence of the unit cell parameters a and c, the c/a ratio and the unit cell volume V at about 240 and 140 K, which is close to the magnetic phase transition temperatures, indicate a pronounced magneto-structural correlation. Spontaneous volume change and linear magnetostrictions are derived as a function of temperature.  相似文献   

10.
We have investigated the crystallographic, magnetic and thermodynamic properties of the as-cast and annealed Ce2NiSi3 alloys, crystallizing in the AlB2-type hexagonal structure. The DC-magnetic susceptibility data show that the as-cast sample exhibits an antiferromagnetic (AFM) ordering below TN= 3.8 K, whereas the annealed sample shows, at 4.2 K, a magnetic transition of AFM nature and, around 2.5 K, an additional anomaly. The specific heat shows a peak with at 3.8 K for the as cast sample, which shifts to lower temperatures when the magnetic field increases, consistent with the antiferromagnetic nature of the transition. On the other hand, in the annealed alloy, the maximum of the specific heat peak reaches at 4.2 K, and no additional anomalies were observed. The different magnetic behavior between the as-cast and annealed samples is attributed to thermal effects on the structural disorder of nickel and silicon atoms, as already observed in other isotypic R2TSi3 alloys, where R=U or Ce, and T= transition metal.  相似文献   

11.
12.
13.
We have carried out specific heat measurements on EuIn2P2 at high magnetic fields perpendicular to the c-axis in the hexagonal crystal structure in order to understand its thermal properties. The temperature dependence of the specific heat exhibits a clear λ-type anomaly due to a magnetic transition at , indicating that the magnetic transition is of second-order. The λ-type anomaly becomes markedly broader with increasing the magnetic field. This remarkable field-dependence is consistent with the results of previous magnetization measurements which suggest that Eu2+ magnetic moments align ferromagnetically perpendicular to the c-axis below TC. In addition, a hump in the specific heat is observed around 7 K, which can be ascribed to the Zeeman splitting of the Eu2+ multiplet by internal magnetic fields.  相似文献   

14.
The high-resolution infrared spectra of DCF3 were reinvestigated in the ν6 fundamental band region near 500 cm−1 and around 1000 cm−1 with the aim to assign and analyze the overtone level of the asymmetric CF3 bending vibration v6 = 2.The present paper reports on the first study of both its sublevels (A1 and E corresponding to l = 0 and ±2, respectively) through the high-resolution analysis of the overtone band and the hot and bands.The well-known “loop method”, applied to and , yielded ground state energy differences Δ(KJ) = E0(KJ) − E0(K − 3,J) for the range of K = 6 to 30.In the final fitting of molecular parameters, we used the strategy of fitting all upper state data together with the ground state rotational transitions.This is equivalent to that calculating separately the and coefficients of the K-dependent part of the ground state energy terms from the combination loops.All rotational constants of the ground state up to sextic order could be refined in the calculation.This led to a very accurate determination of C0 = 0.18924413(25) cm−1, , and also .In the course of analyzing simultaneously the overtone band together with the and ν6 bands, the original assignment of the fundamental ν6 band [Bürger et al., J. Mol. Spectrosc. 182 (1997) 34-49] was found to be incompatible with the present one. Assignments of the (k + 1, l6 = +1)/(k − 1,l6 = −1) levels had to be interchanged, which changed the value of 6 = −0.14198768(26) cm−1 and the sign of the combination of constants C − B −  in the v6 = 1 level to a negative value.  相似文献   

15.
The influence of composition on the structural ordering and magnetism in the VxNb1+yS2 system has been investigated by X-ray diffraction and magnetic measurements. Stoichiometric V1/3NbS2 did not exhibit the structural ordering of vanadium between the NbS2 layers. In the ordered structure, the vanadium composition deviated from the ideal value of to both higher and lower values, while the niobium composition was in the range of 0.05?y?0.18. Excess niobium, y>0, is thought to play an essential role in the structural ordering in this system. For samples with excess niobium and ordered structures, a magnetic transition was observed at 20-50 K, depending on the composition. The spontaneous magnetization of 3-5×10−3 μB/V atom is thought to be intrinsic to this system. The magnetization curves consisted of a constant and a proportional parts of the magnetic field, which correspond to the spontaneous magnetization and high-field susceptibility, respectively. The magnetization curves and the temperature dependencies of the high-field susceptibility were quite similar to those of the canted antiferromagnetic NiS2. A correlation between the structural and magnetic ordering is suggested.  相似文献   

16.
We report the detailed results of magnetization and magnetoresistance measurements in the Ru doped layered manganite system La1.2Sr1.8Mn2−xRuxO7 (x=0, 0.1, 0.5, 1.0). High-resolution measurements of magnetization and magnetoresistance were carried out as functions of temperature, magnetic field and time. We find evidence for the existence of competing ferromagnetic and antiferromagnetic interactions resulting in the formation of a frustrated spin-glass-like state at low temperatures. The time dependent magnetization follows the relation very well. We find that Ru doping enhances the coercive field and drives the system towards a magnetically mixed phase at low temperatures. Large negative magnetoresistance values are observed in all samples and at low temperatures the magnetoresistance varies as the square root of the applied magnetic field.  相似文献   

17.
A new compound UPd2Sb was prepared and studied by means of X-ray diffraction, magnetization, electrical resistivity, magnetoresistivity, thermoelectric power and specific heat measurements. The phase crystallizes with a cubic structure of the MnCu2Al-type (s.g. ). It orders antiferromagnetically at TN=55 K and exhibits a modified Curie-Weiss behaviour with reduced effective magnetic moment at higher temperatures. The electrical resistivity behaves in a manner characteristic of systems with strong electronic correlations, showing Kondo effect in the paramagnetic region and Kondo-like response to the applied magnetic field. The Seebeck coefficient exhibits a behaviour expected for scattering of conduction electrons on a narrow quasiparticle band near the Fermi energy. The low-temperature electronic specific heat in UPd2Sb is moderately enhanced being about 81 mJ/mol K2.  相似文献   

18.
Neutron scattering results on single crystals shed light on the static and dynamic properties of the superconductor () PuCoGa5 and its isostructural but antiferromagnetic () homologue NpCoGa5. By polarized neutron diffraction the magnetization density in the paramagnetic state of both compounds has been inferred. The microscopic magnetization of NpCoGa5 is consistent with the orbital and spin components of a localized Np3+ magnetic moment. In the case of PuCoGa5 the microscopic magnetization is small, temperature-independent and cannot be described as a localized Pu3+ magnetic moment. For NpCoGa5 a dynamic magnetic signal has been observed by three-axis spectroscopy in the antiferromagnetically ordered state. The magnetic signal is strongest at the antiferromagnetic zone center and an energy transfer of about 5 meV. Magnetic fluctuations persist at this position in the paramagnetic state. The dynamic response is similar to the dynamic response observed in other actinide intermetallic compounds. This supports the possibility that magnetic fluctuations could also be present in the paramagnetic superconductor PuCoGa5.  相似文献   

19.
Magnetoelectric composites of Ni0.8Co0.1Cu0.1Fe2O4 and Lead Zirconate Titanate (PZT) were prepared by using conventional ceramic method. The measured values of saturation magnetization (Ms) and magnetic moments (μB) are in accordance with the volume fraction of ferrite content in the composite. The dielectric constant of the composites decreases with frequency. The plots of dielectric constant () against temperature (T) show a peak at their respective transition temperatures. The ME output was measured by varying dc bias magnetic field. A large ME output signal of 776 mV/cm was observed for 35% ferrite +65% ferroelectric composite. The magnetoelectric (ME) response is found to be dependent on the content of ferrite phase.  相似文献   

20.
The structure, magnetic properties, and magnetocaloric effect of La0.7Ca0.3MnO3 ceramics with different particle sizes have been investigated. It is found that the Curie temperature increases first, and then decreases as particle size decreases and the type of magnetic phase transition changes from first-order to second-order, which may be attributed to surface pressure effects. The maximum magnetic entropy change and relative cooling power (RCP) show non-monotonic behaviors with decreasing the particle size. However, for the 3400 nm sample, the magnetic entropy change −ΔSM reaches the maximum values of 6.41 and 8.63 J/kg K for the field changes of 2.0 and 4.5 T, respectively. Furthermore, the estimated large RCP values under lower magnetic fields in La0.7Ca0.3MnO3 are comparable with those of typical magnetic refrigerant materials in the corresponding temperature range, suggesting those compounds might be promising candidates for magnetic refrigeration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号