首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
The effect of several polyelectrolytes on the absorption spectrum of crystal violet (CV) has been studied over a wide range of pH. The following polymers were used: isotactic poly(methacrylic acid), PMAi; conventional poly(methacrylic acid), PMAc; a methacrylic acid (80%)-styrene (20%) copolymer, PMAS; and poly(styrene sulfonic acid), PSSA. Distinctly different effects were observed in the four cases. This has been interpreted in terms of a dependence of the degree and mode of binding of cationic dye molecules onto the polyacids on the hydrophobicity of the macroions.  相似文献   

2.
Controlled free radical polymerization (CFRP) of vinyl chloride (VCM) and copolymerization with several comonomers have been studied in aqueous suspension. Therefore di-tert-butylnitroxide and three novel nitroxyl radicals were used as mediating agents. Copolymerization of VCM with styrene, partly combined with acrylonitrile, maleic acid anhydride and maleic acid imide as well as methyl methacrylate, n-butyl methacrylate, butyl acrylate and butadiene have been achieved, demonstrating an efficient route for novel vinyl chloride copolymer architecture.  相似文献   

3.
The preparation of some unique block copolymers and block copolymer particles via radical heterophase polymerization is described. Special emphasis is placed on double hydrophilic block copolymers such as poly(styrene sulfonic acid)-b-poly(methacrylic acid) diblock copolymer and double hydrophilic block copolymer particles consisting of both hydrophilic shells and cross-linked hydrophilic cores. Examples are given for the application of such particles as adsorbents, nano-reactors for chemical synthesis, and as colloidal stabilizers in both heterophase polymerization and biomineralization reactions.  相似文献   

4.
The crosslinking performance of the unsaturated hyperbranched polyester poly(allyloxy maleic acid‐co‐maleic anhydride) (MAHP) was investigated with copolymerizations of three different monomers: styrene, vinyl acetate, and methyl methacrylate. Both styrene and vinyl acetate afforded interpenetrating‐polymer‐network copolymer gels. The gels exhibited crosslink density gradients through the polymer matrices on a macroscopic level, and density maximums were concentrated around the MAHP moieties. The heterogeneity of the gels is briefly discussed in terms of a modified two‐phase model, where one phase consists of an elastic part of low crosslinking density and the other phase consists of an inelastic dendritic part with a highly condensed bond density. Unlike the two‐phase model developed by Choquet and Rietsch, the modified two‐phase model takes into account that both phases swell in good solvents. Unlike copolymerizations employing styrene or vinyl acetate, the copolymerization of MAHP with methyl methacrylate afforded noncrosslinked starbranched copolymers that consisted of a MAHP core from which long poly(methyl methacrylate) branches were protruding. The different behaviors of the copolymerizations of the three monomers used in this study can rationally be explained by their different reactivity ratios with maleic end groups of MAHP. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 964–972, 2001  相似文献   

5.
Glass beads were etched with acids and bases to increase the surface porosity and the number of silanol groups that could be used for grafting materials to the surfaces. The pretreated glass beads were functionalized using 3‐aminopropyltriethoxysilane (APS) coupling agent and then further chemically modified by reacting the carboxyl groups of carboxylic acid polymers with the amino groups of the pregrafted APS. Several carboxylic acid polymers and poly(maleic anhydride) copolymers, such as poly(acrylic acid) (PAA), poly(methacrylic acid) (PMA), poly(styrene‐alt‐maleic anhydride) (PSMA), and poly(ethylene‐alt‐maleic anhydride) (PEMA) were grafted onto the bead surface. The chemical modifications were investigated and characterized by FT‐IR spectroscopy, particle size analysis, and tensiometry for contact angle and porosity changes. The amount of APS and the different polymer grafted on the surface was determined from thermal gravimetric analysis and elemental analysis data. Spectroscopic studies and elemental analysis data showed that carboxylic acid polymers and maleic anhydride copolymers were chemically attached to the glass bead surface. The improved surface properties of surface modified glass beads were determined by measuring water and hexane penetration rates and contact angle. Contact angles increased and porosity decreased as the molecular weights of the polymer increased. The contact angles increased with the hydrophobicity of the attached polymer. The surface morphology was examined by scanning electron microscopy (SEM) and showed an increase in roughness for etched glass beads. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Commercial grades of high density polyethylene, HDPE and waste poly(ethylene terephthalate), PET were melt blended over a wide range of compositions. Effect of ethylene acrylic acid copolymer, EAA, ethylene vinyl acetate copolymer, EVA and maleic anhydride grafted EVA as compatibilizers on rheology and mechanical properties of the blend was studied. EAA was found most suitable compatibilizer.  相似文献   

7.
The radical polymerization of maleic anhydride(MA),styrene(ST)with the vinyl groups introduced onto the surface of the nano-sized silica via solution polymerization method was developed.The methacryloxypropyl nano-sized silica(MPNS)was used as macromonomer and polymerized with maleic anhydride and styrene by initiating with BPO in toluene.The structure and properties of MPNS/SMA nano-composite were characterized by FT-IR spectra and TEM.Meanwhile,it was applied as tanning agent compared with the traditional styrene-maleic anhydride copolymer in leather.It was found that the applied leather had better quality characteristics with the addition of the nano-sized silica.  相似文献   

8.
RAFT copolymerization of beta‐pinene and maleic anhydride was successfully achieved for the first time, using 1‐phenylethyl dithiobenzoate as chain transfer agent in a mixed solvent of tetrehydrofuran and 1.4‐dioxane (1:9, v/v) at a feed molar ratio of beta‐pinene to maleic anhydride as 3:7, and the alternating copolymer was prepared with predetermined molecular weight and narrow molecular weight distribution. Furthermore, using former alternating copolymer as a macro‐RAFT agent, block copolymer poly(beta‐pinene‐alt‐maleic anhydride)‐b‐polystyrene was synthesized in a chain extending with styrene. Hydrolysis of this block copolymer under acidic conditions formed a new amphiphilic block copolymers poly(beta‐pinene‐alt‐maleic acid)‐b‐polystyrene whose self‐assembly behaviors in aqueous solution at different pH were investigated through SEM and DLS. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1422–1429  相似文献   

9.
富勒烯-苯乙烯-顺丁烯二酸酐三元共聚物的摩擦学行为   总被引:4,自引:0,他引:4  
水溶性;纳米微球;摩擦学性能;富勒烯-苯乙烯-顺丁烯二酸酐三元共聚物的摩擦学行为  相似文献   

10.
This paper describes the functionalization of multi-walled carbon nanotubes (MWNTs) by radiation-induced graft polymerization (RIGP) of vinyl monomers with functional groups and the application of these MWNTs in enzyme-free biosensors. The vinyl monomers used were acrylic acid (AAc), methacrylic acid (MAc), glycidyl methacrylate (GMA), maleic anhydride (MAn), and 4-vinylphenylboronic acid (VPBAc). Tubular-type MWNTs were obtained via RIGP of various vinyl monomers. The poly(VPBAc)-grafted MWNTs (PVBAc-g-MWNTs) were used as sensing sites in enzyme-free glucose sensors for the detection of glucose without enzymes. The PVBAc-g-MWNTs electrode displayed an excellent linear response to glucose concentration in the range 1.0–10 mM. The functionalized MWNTs prepared by RIGP can be used as biosensor materials.  相似文献   

11.
Several water‐soluble polymers were used as templates for the in situ polymerization of pyrrole to determine their effect on the generation of nanosized polypyrrole (PPy) particles. The polymers used include: polyvinyl alcohol (PVA), polyethylene oxide (PEO), poly(vinyl butyral), polystyrene sulfonic acid, poly(ethylene‐alt‐maleic anhydride) (PEMA), poly(octadecene‐alt‐maleic anhydride), poly(N‐vinyl pyrrolidone), poly(vinyl butyral‐co‐vinyl alcohol‐co‐vinyl acetate), poly(N‐isopropyl acrylamide), poly(ethylene oxide‐block‐propylene oxide), hydroxypropyl methyl cellulose, and guar gum. The oxidative polymerization of pyrrole was carried out with FeCl3 as an oxidant. The morphology of PPy particles obtained after drying the resulting aqueous dispersions was examined by optical microscopy, and selected samples were further analyzed via atomic force microscopy. Among the template polymers, PVA was the most efficient in generating stable dispersions of PPy nanospheres in water, followed by PEO and PEMA. The average size of PPy nanospheres was in the range of 160 nm and found to depend on the molecular weight and concentration of PVA. Model reactions and kinetics of the polymerization reaction of pyrrole in PVA were carried out by hydrogen 1H NMR spectroscopy using ammonium persulfate as an oxidant. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
用3 氨丙基三乙氧基硅烷(APTES)作为偶联剂,通过溶胶 凝胶(Sol Gel)过程制得两相以共价键结合的透明苯乙烯 顺丁烯二酸酐共聚物/SiO2杂化材料.通过FTIR分析等证实了材料有机相与无机相间是以共价键结合的.分析了材料热处理温度和分别用盐酸或氨水作催化剂时对材料溶胶分数的影响、偶联剂及其用量对溶胶 凝胶体系凝胶时间的影响、并研究了杂化材料中无机含量对材料折射率和Tg的影响  相似文献   

13.
The effect of γ irradiation on a series of vinyl polymers, which included polymethacrylonitrile, poly(α-chloroacrylonitrile), poly(dimethyl itaconate), poly(acrylic anhydride), and poly(methacrylic anhydride), was studied as part of a program to develop improved positive lithographic resists. Radiation-induced degradation was observed for polymethacrylonitrile, poly(α-chloroacrylonitrile), and poly(methacrylic anhydride). Molecular weight degradation as a function of dose was monitored by membrane osmometry or GPC techniques. For γ-irradiated poly(dimethyl itaconate) and poly(acrylic anhydride) crosslinking was found to predominate over chain scission. [G(s)–G(x)] values, calculated from molecular weight inverse versus dose curves, indicate that both nitrile polymers degraded more efficiently than a poly(methyl methacrylate) reference standard on the basis of M n changes. The radiation behavior of the first three polymers confirms earlier findings than vinyl polymers with quaternary carbons predominantly degrade when subjected to ionizing radiation.  相似文献   

14.
Formulae to calculate the statistically caused instantaneous copolymer composition distribution as well as the chemical distribution of accumulated macromolecules, which is due to polymerization statistics and shifts in mean polymer composition during the reaction process, are derived on the basis of a universal model for free-radical solution polymerization with any number of monomers proceeding in a batch, semi-batch or continuous, ideally mixed vessel. The influence of the reactor type on chemical composition distributions is investigated for a copolymerization of different reactive components (methyl methacrylate/styrene/maleic anhydride), a system with nearly equal reactive monomers (methyl methacrylate/styrene), and the ternary polymerization of methyl methacrylate/styrene/maleic anhydride. Though products of constant mean composition are obtainable in a semi-batch or steady-state continuous reactors, considerable statistical dispersion cannot be removed in any case.  相似文献   

15.
Solid poly(methyl vinyl-alt-maleimide), when subjected to heating at 100°C while being vacuum pumped at 0.1 mm Hg pressure, was converted to a copolymer in which a substantial portion of the imide groups were converted to anhydride groups. Similarly, heating at 100°C at atmospheric pressure in a circulating air oven brought about the same reaction but at a faster rate. This confirms the hypothesis that the formation of maleic anhydride comonomer units from poly(methyl vinyl ether-alt-ammonium maleamate) not only proceeds directly by ring closure of amic acid formed by loss of ammonia but probably also includes, as a parallel pathway, hydrolysis by atmospheric moisture of maleimide comonomer units.  相似文献   

16.
Blends of poly(vinyl methyl ether) (PVME) with styrene/acrylonitrile (SAN), with styrene/maleic anhydride (SMA), and with styrene/acrylic acid (SAA) copolymers were examined for glass transition and lower critical solution temperature behavior. These copolymers were found to be completely miscible with PVME at levels of 3% or less of AA; below 10–11% AN, and below 15% MA (w%). Small amounts of the comonomers raised the temperature at which blends with PVME undergo phase separation on heating. This effect was greatest in the order AA > AN > MA. An interpretation of these results is given in terms of recent theories for homopolymer-copolymer blends, and the extent to which solubility parameter theory can be useful is considered.  相似文献   

17.
彭继华  郭贵宝 《应用化学》2019,36(8):909-916
利用四甲基氢氧化铵(TMAH)聚偏氟乙烯(PVDF)进行改性,以过氧化苯甲酰(BPO)为引发剂,将苯乙烯磺酸(SSA)接枝到改性的PVDF骨架上,制得聚偏氟乙烯接枝聚苯乙烯磺酸(PSSA-g-PVDF)油水分离膜。 研究了TMAH质量分数对PSSA的接枝率和油水分离膜性能的影响,同时采用傅立叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)和视频光学接触角测量仪测试了膜的结构和表面接触角。 结果表明,TMAH使PVDF脱去部分氟化氢(HF)产生碳碳双键,硫元素均匀地分布在分离膜中。 PSSA的接枝率随着TMAH的质量分数增加而升高,分离膜的水通量随接枝率的升高先增加后降低。 当TMAH质量分数为20%,分离膜的接触角在30 s内降低到37.2°,接枝率和水通量分别为22.1%、643.3 L/(m·h),截留率和水通量恢复率分别达到90.6%和93.7%,衰减率为7.1%。 循环测试显示膜的水通量恢复率和油水通量恢复率均在90%以上。  相似文献   

18.
The phase behavior of a series of styrene/maleic anhydride (SMA) copolymers with various polyacrylate and polymethacrylate homopolymers has been investigated using various techniques. None of the polyacrylates are miscible with SMA copolymers. Poly (methyl methacrylate) (PMMA) poly(ethyl methacrylate) (PEMA) and poly(n-propyl methacrylate) (PnPMA), are miscible with these copolymers over a certain range of maleic anhydride contents; whereas, the higher methacrylates apparently have no region of miscibility. For PEMA and PnPMA, the miscibility windows extend through 0% MA; hence, polystyrene is miscible with these polymethacrylates although the lower critical solution temperature is quite low. The exothermic heat of mixing styrene and ester analogs found here supports the observed miscibility of polystyrene with ethyl, n-propyl, and cyclohexyl (reported elsewhere) methacrylates. Lattice fluid interaction parameters for styrene-methacrylate obtained from the cloud points of these blends agree quite well with the Flory—Huggins parameters obtained from copolymer miscibility windows.  相似文献   

19.
Vapor-phase graft copolymerizations of acenaphthylene–maleimide or acenaphthylene–maleic anhydride binary solid monomers onto poly(ethylene-co-vinyl acetate) films were carried out under ultraviolet irradiation. The extent of sorption of single or binary monomers increased with the increasing vinyl acetate content in the backbone polymers. The sorbed binary monomers were mainly composed of acenaphthylene, but the maleimide or maleic anhydride fraction increased with the increasing vinyl acetate content of the films and the composition was little affected by surface hydrolysis. In all series of graft polymerization of single or binary monomers the overall extent of grafting increased with the vinyl acetate content and was suppressed by the surface hydrolysis of the backbone film. The composition of the grafted copolymer, however, differed markedly, depending on the combination of binary monomers. The grafted copolymer in the acenaphthylene–maleimide system was composed mainly of acenaphthylene units, whereas that in the acenaphthylene–maleic anhydride system was composed mainly of maleic anhydride units. The results were compared with those of γ-ray grafting, and it was suggested that the contribution of a direct supply of monomers from vapor phase and the existence of an acetoxy group on the surface of the film should play an important role in the grafting reaction.  相似文献   

20.
In this study, the functionality of maleic anhydride was utilized in the maleic anhydride-styrene-methyl metacrylate (MAStMMA) terpolymer. First, the polyester of poly(ethylene adipate), PEA, polycondensation copolymer was synthesized from ethylene glycol and adipic acid monomers. PEA was then modified on its maleic anhydride units in the MAStMMA terpolymer which has been synthesized previously. This modified copolymer was characterized by FTIR (Fourier Transform Infrared spectroscopy). The viscosimetric and thermomechanical characterization of MAStMMA terpolymer and its modified copolymer were also performed and the results were compared. The modified copolymer obtained was found to be more elastic and more soluble, and had lower viscosity and density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号