首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we establish the following estimate:
$$\omega \left( {\left\{ {x \in {\mathbb{R}^n}:\left| {\left[ {b,T} \right]f\left( x \right)} \right| > \lambda } \right\}} \right) \leqslant \frac{{{c_T}}}{{{\varepsilon ^2}}}\int_{{\mathbb{R}^n}} {\Phi \left( {{{\left\| b \right\|}_{BMO}}\frac{{\left| {f\left( x \right)} \right|}}{\lambda }} \right){M_{L{{\left( {\log L} \right)}^{1 + \varepsilon }}}}} \omega \left( x \right)dx$$
where ω ≥ 0, 0 < ε < 1 and Φ(t) = t(1 + log+(t)). This inequality relies upon the following sharp L p estimate:
$${\left\| {\left[ {b,T} \right]f} \right\|_{{L^p}\left( \omega \right)}} \leqslant {c_T}{\left( {p'} \right)^2}{p^2}{\left( {\frac{{p - 1}}{\delta }} \right)^{\frac{1}{{p'}}}}{\left\| b \right\|_{BMO}}{\left\| f \right\|_{{L^p}\left( {{M_{L{{\left( {{{\log }_L}} \right)}^{2p - 1 + {\delta ^\omega }}}}}} \right)}}$$
where 1 < p < ∞, ω ≥ 0 and 0 < δ < 1. As a consequence we recover the following estimate essentially contained in [18]:
$$\omega \left( {\left\{ {x \in {\mathbb{R}^n}:\left| {\left[ {b,T} \right]f\left( x \right)} \right| > \lambda } \right\}} \right) \leqslant {c_T}{\left[ \omega \right]_{{A_\infty }}}{\left( {1 + {{\log }^ + }{{\left[ \omega \right]}_{{A_\infty }}}} \right)^2}\int_{{\mathbb{R}^n}} {\Phi \left( {{{\left\| b \right\|}_{BMO}}\frac{{\left| {f\left( x \right)} \right|}}{\lambda }} \right)M} \omega \left( x \right)dx.$$
We also obtain the analogue estimates for symbol-multilinear commutators for a wider class of symbols.
  相似文献   

2.
Let f and g be multiplicative functions of modulus 1. Assume that \( {\lim_{x \to \infty }}\frac{1}{x}\left| {\sum\nolimits_{n \leqslant x} {f(n)} } \right| = A > 0 \) and \( {\lim_{x \to \infty }}\frac{1}{x}\left| {\sum\nolimits_{n \leqslant x} {g(n)} } \right| = 0 \). We prove that, under these conditions,
$ \mathop {\lim }\limits_{x \to \infty } \frac{1}{x}\sum\limits_{n \leqslant x} {f(n)g(n + 1) = 0.}$
Concerning the Liouville function λ, we find an upper estimate for \( \frac{1}{x}\left| {\sum\limits_{n \leqslant x} {\lambda (n)\lambda (n + 1)} } \right| \) under the unproved hypothesis that L(s, χ) have Siegel zeros for an infinite sequence of L-functions.
  相似文献   

3.
The paper is devoted to the study of the weak norms of the classical operators in the vector-valued setting.
  1. Let S, H denote the singular integral involution operator and the Hilbert transform on $L^p \left( {\mathbb{T}, \ell _\mathbb{C}^2 } \right)$ , respectively. Then for 1 ≤ p ≤ 2 and any f, $$\left\| {\mathcal{S}f} \right\|_{p,\infty } \leqslant \left( {\frac{1} {\pi }\int_{ - \infty }^\infty {\frac{{\left| {\tfrac{2} {\pi }\log \left| t \right|} \right|^p }} {{t^2 + 1}}dt} } \right)^{ - 1/p} \left\| f \right\|p,$$ $$\left\| {\mathcal{H}f} \right\|_{p,\infty } \leqslant \left( {\frac{1} {\pi }\int_{ - \infty }^\infty {\frac{{\left| {\tfrac{2} {\pi }\log \left| t \right|} \right|^p }} {{t^2 + 1}}dt} } \right)^{ - 1/p} \left\| f \right\|p.$$ Both inequalities are sharp.
  2. Let P + and P ? stand for the Riesz projection and the co-analytic projection on $L^p \left( {\mathbb{T}, \ell _\mathbb{C}^2 } \right)$ , respectively. Then for 1 ≤ p ≤ 2 and any f, $$\left\| {P + f} \right\|_{p,\infty } \leqslant \left\| f \right\|_p ,$$ $$\left\| {P - f} \right\|_{p,\infty } \leqslant \left\| f \right\|_p .$$ Both inequalities are sharp.
  3. We establish the sharp versions of the estimates above in the nonperiodic case.
The results are new even if the operators act on complex-valued functions. The proof rests on the construction of an appropriate plurisubharmonic function and probabilistic techniques.  相似文献   

4.
The purpose of this paper is threefold. First, we prove sharp singular affine Moser–Trudinger inequalities on both bounded and unbounded domains in \({\mathbb {R}}^{n}\). In particular, we will prove the following much sharper affine Moser–Trudinger inequality in the spirit of Lions (Rev Mat Iberoamericana 1(2):45–121, 1985) (see our Theorem 1.4): Let \(\alpha _{n}=n\left( \frac{n\pi ^{\frac{n}{2}}}{\Gamma (\frac{n}{2}+1)}\right) ^{\frac{1}{n-1}}\), \(0\le \beta <n\) and \(\tau >0\). Then there exists a constant \(C=C\left( n,\beta \right) >0\) such that for all \(0\le \alpha \le \left( 1-\frac{\beta }{n}\right) \alpha _{n}\) and \(u\in C_{0}^{\infty }\left( {\mathbb {R}}^{n}\right) \setminus \left\{ 0\right\} \) with the affine energy \(~{\mathcal {E}}_{n}\left( u\right) <1\), we have
$$\begin{aligned} {\displaystyle \int \nolimits _{{\mathbb {R}}^{n}}} \frac{\phi _{n,1}\left( \frac{2^{\frac{1}{n-1}}\alpha }{\left( 1+{\mathcal {E}}_{n}\left( u\right) ^{n}\right) ^{\frac{1}{n-1}}}\left| u\right| ^{\frac{n}{n-1}}\right) }{\left| x\right| ^{\beta }}dx\le C\left( n,\beta \right) \frac{\left\| u\right\| _{n}^{n-\beta }}{\left| 1-{\mathcal {E}}_{n}\left( u\right) ^{n}\right| ^{1-\frac{\beta }{n}}}. \end{aligned}$$
Moreover, the constant \(\left( 1-\frac{\beta }{n}\right) \alpha _{n}\) is the best possible in the sense that there is no uniform constant \(C(n, \beta )\) independent of u in the above inequality when \(\alpha >\left( 1-\frac{\beta }{n}\right) \alpha _{n}\). Second, we establish the following improved Adams type inequality in the spirit of Lions (Theorem 1.8): Let \(0\le \beta <2m\) and \(\tau >0\). Then there exists a constant \(C=C\left( m,\beta ,\tau \right) >0\) such that
$$\begin{aligned} \underset{u\in W^{2,m}\left( {\mathbb {R}}^{2m}\right) , \int _{ {\mathbb {R}}^{2m}}\left| \Delta u\right| ^{m}+\tau \left| u\right| ^{m} \le 1}{\sup } {\displaystyle \int \nolimits _{{\mathbb {R}}^{2m}}} \frac{\phi _{2m,2}\left( \frac{2^{\frac{1}{m-1}}\alpha }{\left( 1+\left\| \Delta u\right\| _{m}^{m}\right) ^{\frac{1}{m-1}}}\left| u\right| ^{\frac{m}{m-1}}\right) }{\left| x\right| ^{\beta }}dx\le C\left( m,\beta ,\tau \right) , \end{aligned}$$
for all \(0\le \alpha \le \left( 1-\frac{\beta }{2m}\right) \beta (2m,2)\). When \(\alpha >\left( 1-\frac{\beta }{2m}\right) \beta (2m,2)\), the supremum is infinite. In the above, we use
$$\begin{aligned} \phi _{p,q}(t)=e^{t}- {\displaystyle \sum \limits _{j=0}^{j_{\frac{p}{q}}-2}} \frac{t^{j}}{j!},\,\,\,j_{\frac{p}{q}}=\min \left\{ j\in {\mathbb {N}} :j\ge \frac{p}{q}\right\} \ge \frac{p}{q}. \end{aligned}$$
The main difficulties of proving the above results are that the symmetrization method does not work. Therefore, our main ideas are to develop a rearrangement-free argument in the spirit of Lam and Lu (J Differ Equ 255(3):298–325, 2013; Adv Math 231(6): 3259–3287, 2012), Lam et al. (Nonlinear Anal 95: 77–92, 2014) to establish such theorems. Third, as an application, we will study the existence of weak solutions to the biharmonic equation
$$\begin{aligned} \left\{ \begin{array}{l} \Delta ^{2}u+V(x)u=f(x,u)\text { in }{\mathbb {R}}^{4}\\ u\in H^{2}\left( {\mathbb {R}}^{4}\right) ,~u\ge 0 \end{array} \right. , \end{aligned}$$
where the nonlinearity f has the critical exponential growth.
  相似文献   

5.
Suppose f∈Hp(Tn), 0 r δ , δ=n/p?(n+1)/2. In this paper we eastablish the following inequality $$\mathop {\sup }\limits_{R > 1} \left\{ {\frac{1}{{\log R}}\int_1^R {\left\| {\sigma _r^\delta } \right\|_{H^p (T^R )}^p \frac{{dr}}{r}} } \right\}^{1/p} \leqslant C_{R,p} \left\| f \right\|_{H^p (T^R )} $$ It implies that $$\mathop {\lim }\limits_{R \to \infty } \frac{1}{{\log R}}\int_1^R {\left\| {\sigma _r^\delta - f} \right\|_{H^p (T^R )}^p \frac{{dr}}{r}} = 0$$ Moreover we obtain the same conclusion when p=1 and n=1.  相似文献   

6.
Пусть? — возрастающа я непрерывная фцнкци я на [0,π],?(0)=0 и $$\mathop \smallint \limits_0^h \frac{{\varphi \left( t \right)}}{t}dt = O\left( {\varphi \left( h \right)} \right){\text{ }}\left( {h \to 0} \right).$$ Положим $$\psi \left( h \right) = h\mathop \smallint \limits_h^\pi \frac{{\varphi \left( t \right)}}{{t^2 }}dt \left( {h \in (0, \pi ]} \right).$$ Доказывается следую щая теорема.Пусть f∈ С[?π, π], ω(f, δ)=О(?(δ))) и $$\mathop {\lim }\limits_{h \to 0} \frac{1}{{\varphi \left( {\left| h \right|} \right)}}\left| {f\left( {x + h} \right) - f\left( x \right)} \right| = 0$$ для x∈E?[?π, π], ¦E¦>0. Тогда д ля сопряженной функц ии f почти всюду на E выполн яется соотношение $$\mathop {\lim }\limits_{h \to 0} \frac{1}{{\psi \left( {\left| h \right|} \right)}}\left| {\tilde f\left( {x + h} \right) - \tilde f\left( x \right)} \right| = 0.$$ Из этой теоремы вытек ает положительное ре шение одной задачи Л. Лейндлера.  相似文献   

7.
In the space L 2(?2), we consider the operator
$H = \left( {\frac{1}{i}\frac{\partial }{{\partial x_1 }} - x_2 } \right)^2 + \left( {\frac{1}{i}\frac{\partial }{{\partial x_2 }} + x_1 } \right)^2 + V,V = V(x) \in L_2 (\mathbb{R}^2 ).$
. We study the spectrum of H and, for VC 0 2 (?2), prove the trace formula
$\sum\limits_{k = 0}^\infty {\left( {\sum\limits_{i = - k}^\infty {(4k + 2 - \mu _k^{(i)} ) + c_0 } } \right)} = \frac{1}{{8\pi }}\int\limits_{\mathbb{R}^2 } {V^2 (x)dx,} $
where c 0 = π ?1 \(\smallint _{\mathbb{R}^2 } \) V(x) dx and the µ k (i) are the eigenvalues of H.
  相似文献   

8.
We present a variation-of-constants formula for functional differential equations of the form
$$\dot y = \mathcal{L}\left( t \right)y_t + f\left( {y_t,t} \right),\;y_{t_0}= \varphi $$
, where \(\mathcal{L}\) is a bounded linear operator and φ is a regulated function. Unlike the result by G. Shanholt (1972), where the functions involved are continuous, the novelty here is that the application t \(t \mapsto f\left( {y_t,t} \right)\) is Kurzweil integrable with t in an interval of ?, for each regulated function y. This means that t \(t \mapsto f\left( {y_t,t} \right)\) may admit not only many discontinuities, but it can also be highly oscillating and yet, we are able to obtain a variation-of-constants formula. Our main goal is achieved via theory of generalized ordinary differential equations introduced by J.Kurzweil (1957). As a matter of fact, we establish a variation-of-constants formula for general linear generalized ordinary differential equations in Banach spaces where the functions involved are Kurzweil integrable. We start by establishing a relation between the solutions of the Cauchy problem for a linear generalized ODE of type
$$\frac{{dx}}{{d\tau }} = D\left[ {A\left( t \right)x} \right],x\left( {{t_0}} \right) = \tilde x$$
and the solutions of the perturbed Cauchy problem
$$\frac{{dx}}{{d\tau }} = D\left[ {A\left( t \right)x + F\left( {x,t} \right)} \right],x\left( {{t_0}} \right) = \tilde x$$
Then we prove that there exists a one-to-one correspondence between a certain class of linear generalized ODE and the Cauchy problem for a linear functional differential equations of the form
$$\dot y = \mathcal{L}\left( t \right)y_t,\;y_{t_0} = \varphi$$
, where \(\mathcal{L}\) is a bounded linear operator and φ is a regulated function. The main result comes as a consequence of such results. Finally, because of the extent of generalized ODEs, we are also able to describe the variation-of-constants formula for both impulsive FDEs and measure neutral FDEs.
  相似文献   

9.
Suppose that m ≥ 2, numbers p 1, …, p m ∈ (1, +∞] satisfy the inequality \(\frac{1}{{{p_1}}} + \cdots + \frac{1}{{{p_m}}} < 1\), and functions \({\gamma _1} \in {L^{{p_1}}}\left( {{?^1}} \right), \cdots ,{\gamma _m} \in {L^{{p_m}}}\left( {{?^1}} \right)\) are given. It is proved that if the set of “resonance” points of each of these functions is nonempty and the “nonresonance” condition holds (both notions were defined by the author for functions in L p (?1), p ∈ (1, +∞]), then \(\mathop {\sup }\limits_{a,b \in {R^1}} \left| {\mathop \smallint \limits_a^b \prod\limits_{k = 1}^m {[{\gamma _k}\left( \tau \right) + \Delta {\gamma _k}\left( \tau \right)]} d\tau } \right| \leqslant C\prod\limits_{k = 1}^m {{{\left\| {{\gamma _k} + \Delta {\gamma _k}} \right\|}_{L_{ak}^{pk}\left( {{R^1}} \right)}}} \) where the constant C > 0 is independent of the functions \(\Delta {\gamma _k} \in L_{ak}^{pk}\left( {{?^1}} \right)\) and \(L_{ak}^{pk}\left( {{?^1}} \right) \subset {L^{pk}}\left( {{?^1}} \right)\), 1 ≤ km, are special normed spaces. A condition for the integral over ?1 of a product of functions to be bounded is also given.  相似文献   

10.
We calculate the sharp bounds for some q-analysis variants of Hausdorff type inequalities of the form
$$\int_0^{ + \infty } {{{\left( {\int_0^{ + \infty } {\frac{{\phi \left( t \right)}}{t}f\left( {\frac{x}{t}} \right){d_q}t} } \right)}^p}{d_q}x} \leqslant {C_\phi }\int_0^b {{f^p}\left( t \right)} {d_q}t$$
. As applications, we obtain several sharp q-analysis inequalities of the classical positive integral operators, including the Hardy operator and its adjoint operator, the Hilbert operator, and the Hardy-Littlewood-Pólya operator.
  相似文献   

11.
Пустьf 2π-периодическ ая суммируемая функц ия, as k (x) еë сумма Фурье порядк аk. В связи с известным ре зультатом Зигмунда о сильной суммируемости мы уст анавливаем, что если λn→∞, то сущес твует такая функцияf, что почти всюду $$\mathop {\lim \sup }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = n + 1}^{2n} |s_k (x) - f(x)|^{\lambda _{2n} } } \right\}^{1/\lambda _{2n} } = \infty .$$ Отсюда, в частности, вы текает, что если λn?∞, т о существует такая фун кцияf, что почти всюду $$\mathop {\lim \sup }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = 0}^n |s_k (x) - f(x)|^{\lambda _k } } \right\}^{1/\lambda _n } = \infty .$$ Пусть, далее, ω-модуль н епрерывности и $$H^\omega = \{ f:\parallel f(x + h) - f(x)\parallel _c \leqq K_f \omega (h)\} .$$ . Мы доказываем, что есл и λ n ?∞, то необходимым и достаточным условие м для того, чтобы для всехfH ω выполнялос ь соотношение $$\mathop {\lim }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = n + 1}^{2n} |s_k (x) - f(x)|^{\lambda _n } } \right\}^{1/\lambda _n } = 0(x \in [0;2\pi ])$$ является условие $$\omega \left( {\frac{1}{n}} \right) = o\left( {\frac{1}{{\log n}} + \frac{1}{{\lambda _n }}} \right).$$ Это же условие необхо димо и достаточно для того, чтобы выполнялось соотнош ение $$\mathop {\lim }\limits_{n \to \infty } \frac{1}{{n + 1}}\mathop \sum \limits_{k = 0}^n |s_k (x) - f(x)|^{\lambda _k } = 0(f \in H^\omega ,x \in [0;2\pi ]).$$   相似文献   

12.
In this paper, we are concerned with the following nonlocal problem
$$\begin{aligned} -\Delta u+u=q(x)\left( \int _{\mathbb {R}^N}\frac{q(y)|u(y)|^p}{|x-y|^{N-\alpha }}\mathrm{d}y\right) |u|^{p-2}u,\quad x\in \mathbb {R}^N, \end{aligned}$$
where \(N\ge 3, \alpha \in ((N-4)_+,N), 2\le p<\frac{N+\alpha }{N-2}\) and q(x) is a given potential. Using comparison arguments and variational approach, we obtain the existence of positive ground-state solution for the Choquard-type equations with some restrictions on the potential q.
  相似文献   

13.
The Berezin symbol à of an operator A acting on the reproducing kernel Hilbert space H = H(Ω) over some (nonempty) set is defined by \(\tilde A(\lambda ) = \left\langle {A\hat k_\lambda ,\hat k_\lambda } \right\rangle \), λ ∈ Ω, where \(\hat k_\lambda = k_\lambda /\left\| {k_\lambda } \right\|\) is the normalized reproducing kernel of H. The Berezin number of the operator A is defined by \(ber(A) = \mathop {\sup }\limits_{\lambda \in \Omega } \left| {\tilde A(\lambda )} \right| = \mathop {\sup }\limits_{\lambda \in \Omega } \left| {\left\langle {A\hat k_\lambda ,\hat k_\lambda } \right\rangle } \right|\). Moreover, ber(A) ? w(A) (numerical radius). We present some Berezin number inequalities. Among other inequalities, it is shown that if \(T = \left[ {\begin{array}{*{20}c} A & B \\ C & D \\ \end{array} } \right] \in \mathbb{B}(\mathcal{H}(\Omega _1 ) \oplus \mathcal{H}(\Omega _2 ))\), then
$$ber(T) \leqslant \frac{1}{2}(ber(A) + ber(D)) + \frac{1}{2}\sqrt {(ber(A) - ber(D))^2 + \left( {\left\| B \right\| + \left\| C \right\|} \right)^2 } .$$
  相似文献   

14.
Let C(Q) denote the space of continuous functions f(x, y) in the square Q = [?1, 1] × [?1, 1] with the norm $\begin{gathered} \left\| f \right\| = \max \left| {f(x,y)} \right|, \hfill \\ (x,y) \in Q. \hfill \\ \end{gathered} $ On a Chebyshev grid, a cubature formula of the form $\int\limits_{ - 1}^1 {\int\limits_{ - 1}^1 {\frac{1} {{\sqrt {(1 - x^2 )(1 - y^2 )} }}f(x,y)dxdy = \frac{{\pi ^2 }} {{mn}}\sum\limits_{i = 1}^n {\sum\limits_{j = 1}^m {f\left( {\cos \frac{{2i - 1}} {{2n}}\pi ,\cos \frac{{2j - 1}} {{2m}}\pi } \right)} + R_{m,n} (f)} } } $ is considered in some class H(r 1, r 2) of functions f ?? C(Q) defined by a generalized shift operator. The remainder R m, n (f) is proved to satisfy the estimate $\mathop {\sup }\limits_{f \in H(r_1 ,r_2 )} \left| {R_{m,n} (f)} \right| = O(n^{ - r_1 + 1} + m^{ - r_2 + 1} ), $ where r 1, r 2 > 1; ???1 ?? n/m ?? ?? with ?? > 0; and the constant in O(1) depends on ??.  相似文献   

15.
In this paper, we prove some congruences conjectured by Z.-W. Sun: For any prime \(p>3\), we determine
$$\begin{aligned} \sum \limits _{k = 0}^{p - 1} {\frac{{{C_k}C_k^{(2)}}}{{{{27}^k}}}} \quad {\text { and }}\quad \sum \limits _{k = 1}^{p - 1} {\frac{{\left( {\begin{array}{l} {2k} \\ {k - 1} \\ \end{array}} \right) \left( { \begin{array}{l} {3k} \\ {k - 1} \\ \end{array} } \right) }}{{{{27}^k}}}} \end{aligned}$$
modulo \(p^2\), where \(C_k=\frac{1}{k+1}\left( {\begin{array}{c}2k\\ k\end{array}}\right) \) is the k-th Catalan number and \(C_k^{(2)}=\frac{1}{2k+1}\left( {\begin{array}{c}3k\\ k\end{array}}\right) \) is the second-order Catalan numbers of the first kind. And we prove that
$$\begin{aligned} \sum _{k=1}^{p-1}\frac{D_k}{k}\equiv -q_p(2)+pq_p(2)^2\pmod {p^2}, \end{aligned}$$
where \(D_n=\sum _{k=0}^{n}\left( {\begin{array}{c}n\\ k\end{array}}\right) \left( {\begin{array}{c}n+k\\ k\end{array}}\right) \) is the n-th Delannoy number and \(q_p(2)=(2^{{p-1}}-1)/p\) is the Fermat quotient.
  相似文献   

16.
We study the break-down mechanism of smooth solution for the gravity water-wave equation of infinite depth. It is proved that if the mean curvature κ of the free surface Σt, the trace(V, B) of the velocity at the free surface, and the outer normal derivative ?P/?n of the pressure P satisfy sup t∈[0,T]||κ(t)||~(Lp∩L~2+∫~T_0||(▽V, ▽B)(t)||~6_(L∞)dt+∞,inf (t,x,y)∈[0,T]×Σ_t-?P/?n(t, x, y)≥c0,for some p 2d and c_0 0, then the solution can be extended after t = T.  相似文献   

17.
The function \(\psi : = \sum\nolimits_{n \in \mathbb{Z}\backslash \left\{ 0 \right\}} {{{e^{\pi i\left( {tn^2 + 2xn} \right)} } \mathord{\left/ {\vphantom {{e^{\pi i\left( {tn^2 + 2xn} \right)} } {\left( {\pi in^2 } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {\pi in^2 } \right)}}} \), {t, x} ?2, is studied as a (generalized) solution of the Cauchy initial value problem for the Schrödinger equation. The real part of the restriction of ψ on the line x = 0, that is, the function \(R: = Re\psi \left| {_{x = 0} = \tfrac{2}{n}} \right.\sum\nolimits_{n \in \mathbb{N}} {\frac{{\sin \pi n^2 t}}{{n^2 }}} \), t ∈ ?, was suggested by B. Riemann as a plausible example of a continuous but nowhere differentiable function. The points are established on ?2 where the partial derivative \(\frac{{\partial \psi }}{{\partial t}}\) exists and equals ?1. These points constitute a countable set of open intervals parallel to the x-axis, with rational values of t. Thereby a natural extension of the well-known results of G.H. Hardy and J. Gerver is obtained (Gerver established that the derivative of the function R still does exist and equals ?1 at each rational point of the type \(t = \frac{a}{q}\) where both numbers a and q are odd). A basic role is played by a representation of the differences of the function ψ via Poisson’s summation formula and the oscillatory Fresnel integral. It is also proved that the number 3 4 is the sharp value of the Lipschitz-Hölder exponent of the function ψ in the variable t almost everywhere on ?2.  相似文献   

18.
Let
be the Fejér kernel, C be the space of contiuous 2π-periodic functions f with the norm , let
be the Jackson polynomials of the function f, and let
be the Fejér sums of f. The paper presents upper bounds for certain quantities like
which are exact in order for every function fC. Special attention is paid to the constants occurring in the inequalities obtained. Bibliography: 14 titles. Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 357, 2008, pp. 90–114.  相似文献   

19.
In this paper, we study on \(\mathbb {R}^{2}\) some new types of the sharp subcritical and critical Trudinger-Moser inequality that have close connections to the study of the optimizers for the classical Trudinger-Moser inequalities. For instance, one of our results can be read as follows: Let 0 ≤ β < 2, p ≥ 0, α ≥ 0. Then
$$\sup_{\left\Vert \nabla u\right\Vert_{2}^{2}+\left\Vert u\right\Vert_{2} ^{2}\leq1}\left\Vert u\right\Vert_{2}^{p}{\int}_{\mathbb{R}^{2}}\exp\left( \alpha\left( 1-\frac{\beta}{2}\right) \left\vert u\right\vert^{2}\right) \left\vert u\right\vert^{2}\frac{dx}{\left\vert x\right\vert^{\beta}}<\infty $$
if and only if α < 4π or α = 4π, p ≥ 2. The attainability and inattainability of these sharp inequalties will be also investigated using a new approach, namely the relations between the supremums of the sharp subcritical and critical ones. This new method will enable us to compute explicitly the supremums of the subcritical Trudinger-Moser inequalities in some special cases. Also, a version of Concentration-compactness principle in the spirit of Lions ( Lions, I. Rev. Mat. Iberoam. 1(1) 145–01 1985) will also be studied.
  相似文献   

20.
Mohsen Kian 《Positivity》2018,22(3):773-781
The famous Hardy inequality asserts that if f is a non-negative p-integrable \((p>1)\) function on \((0,\infty )\), then
$$\begin{aligned} \int _{0}^{\infty }\left( \frac{1}{x}\int _{0}^{x}f(t)dt\right) ^pdx\le \left( \frac{p}{p-1}\right) ^p\int _{0}^{\infty }f(x)^pdx. \end{aligned}$$
We present an external form of the Hardy inequality for Hilbert space operators. Moreover, utilizing the operator log-convex functions, a refinement of the operator Hardy inequality is also given.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号