首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
孟凡顺  李久会  赵星 《物理学报》2014,63(23):237102-237102
采用基于密度泛函理论的第一性原理方法研究了Zn偏析Cu晶界的原子构型和电子结构,分析了Zn偏析对Cu晶界力学性能的影响.结果表明,Zn以替换方式偏析到晶界处,Zn—Cu与Cu—Cu的成键方式类似,均为含有共价成分的金属键.Zn偏析导致少量电荷集聚于Zn与近邻Cu之间,有限地增强了晶界的结合.拉伸过程中Zn的d轨道定域性增强,Zn与近邻Cu间的电荷密度下降,削弱了Zn—Cu键,导致晶界断裂发生在Zn—Cu间.  相似文献   

2.
胡雪兰  赵若汐  罗阳  宋庆功 《中国物理 B》2017,26(2):23101-023101
First-principles calculations based on the density functional theory(DFT) and ultra-soft pseudopotential are employed to study the atomic configuration and charge density of impurity P in Ni Al Σ5 grain boundary(GB). The negative segregation energy of a P atom proves that a P atom can easily segregate in the Ni Al GB. The atomic configuration and formation energy of the P atom in the Ni Al GB demonstrate that the P atom tends to occupy an interstitial site or substitute a Al atom depending on the Ni/Al atoms ratio. The P atom is preferable to staying in the Ni-rich environment in the Ni Al GB forming P–Ni bonds. Both of the charge density and the deformation charge imply that a P atom is more likely to bond with Ni atoms rather than with Al atoms. The density of states further exhibits the interactions between P atom and Ni atom, and the orbital electrons of P, Ni and Al atoms all contribute to P–Ni bonds in the Ni Al GB. It is worth noting that the P–Ni covalent bonds might embrittle the Ni Al GB and weakens the plasticity of the Ni Al intermetallics.  相似文献   

3.
A Lattice Energy Function that combines a Mie type interatomic potential and a free electron gas volume dependence has been applied to the study of grain boundary energy and structure of a Σ = 5 tilt boundary in Au, Cu and Ni and of solute segregation to the same. Interatomic potentials and volume dependencies of the solvent and solute were adjusted to fit the relative partial molar enthalpy and volume at infinite dilution order to construct a AB type potential and volume dependence. This AB interaction is then applied to calculate the binding energies of solute to various grain boundary sites and the resulting change in grain boundary energy. A relationship between the binding energy and change in grain boundary is derived. The relative values of the grain boundary energy are in agreement with experimental values of the average grain boundary energies. The relative binding energies of the tested solvent-solute systems are in agreemnet with expectations that certain systems should have larger binding energies than others. The behavior of solute binding energies and local relaxations are in agreement with other studies of grain boundary segregation which use different Lattice Energy Functions and relaxation algorithms. The change in grain boundary energy is shown to be directly proportional to the binding energy.  相似文献   

4.
We present a short review on our current investigations of the atomic and electronic structures of a grain boundary in iron. Atomic structures of grain boundaries were simulated and the local electronic densities of states were calculated in the simulated structure. When phosphorus impurity atoms segregated at the grain boundaries in iron, trigonal prismatic FeP clusters were formed. Segregated boron atoms tended to stay at the central site of polyhedra constructed by host atoms in the grain boundaries. The non-bonding states of the iron atom at the grain boundary disappear by forming a strong bonding orbital with the orbital of the segregated impurity atom. This bonding orbital is formed in a Fe3d host band in the case of a boron impurity. On the other hand, the bonding orbital is formed at lower energies for the phosphorus impurity and is less-mixed with the Fe3d host band. Non-bonding states are formed around the Fe9P clusters. These can give a qualitative explanation for the embrittlement of the impurity segregated grain boundary. Finally, we can explain from the viewpoint of the electronic structure why the interstitial impurity is the only cohesive enhancer.  相似文献   

5.
王晓中  林理彬  何捷  陈军 《物理学报》2011,60(7):77104-077104
基于密度泛函理论方法,本文开展了氦掺杂AlΣ3((111)/180°)晶界数值模拟拉伸试验.计算结果表明,He在晶界中最低杂质形成能为2.942 eV,偏析到晶界的偏析能为0.085 eV;在拉伸条件下,清洁Σ3晶界的理论拉伸强度为9.65 GPa,拉伸断裂从晶界界面开始;而He掺杂后,晶界的理论拉伸强度下降到7.14 GPa,在断裂发生前应力曲线中出现平台效应,拉伸断裂从包含He杂质的界面开始.通过对比键长和电荷密度分布,本文认为He的满壳层电子结构一方面导致了He与Al之间 关键词: He 晶界 第一性原理计算 力学性质  相似文献   

6.
采用基于密度泛函理论和局域密度近似的第一性原理赝势方法,计算了纯Al晶界和杂质Sr偏析Al晶界的原子结构和电子结构.结果表明Sr偏析引起了晶界膨胀和晶界处电子密度的大幅度降低,从而导致晶界结合力的减弱.这应为Sr杂质偏析引起的Al晶界脆化的主要根源所在. 关键词: Al晶界 Sr 杂质偏析 第一性原理计算  相似文献   

7.
Effect of manganese on grain boundary segregation of sulfur in iron   总被引:2,自引:0,他引:2  
The ASED-MO theory was used to study the electronic effects of S and the S-Mn couple upon the chemical embrittlement of Fe grain boundaries. The results obtained for S alone in a model of grain boundary (GB) are consistent with its observed behavior as a chemical embrittling agent. It was found that the total energy of the cluster decreases when the S atom is located at the GB. When S segregate at the Fe GB containing Mn, the embrittlement process was modified. The crystal orbital overlap population (COOP) curves gives a measure of Fe-Fe bond weakening due to the segregated atoms at the GB. Our calculations show that Mn behaves as a weak embrittler on the Fe GB. The Fe-Mn bonds were strengthened, while Fe-Fe bonds of the capped trigonal prism of the GB (CTP) were weakened. On the other hand, when S segregate at the Mn/Fe cluster, some metallic bonds were resistant to chemical embrittlement.  相似文献   

8.
The adsorption of hydrogen on a clean Cu10%/Ni90% (110) alloy single crystal was studied using flash desorption spectroscopy (FDS), Auger electron spectroscopy (AES), and work function measurements. Surface compositions were varied from 100% Ni to 35% Ni. The hydrogen chemisorption on a-surface of 100% nickel revealed strong attractive interactions between the hydrogen atoms in accordance with previous work on Ni(100). Three desorption states (β1, β2 and α) appeared in the desorption spectra. The highest temperature (α) state was occupied only after the initial population of the β2-state. As the amount of copper was increased in the nickel substrate, desorption from the higher energy binding α-state was reduced, indicating a decrease in the attractive interactions among hydrogen atoms. The hydrogen coverage at saturation was not affected by the addition of copper to the nickel substrate until the copper concentration was greater than 25% at which a sharp reduction in saturation coverage occurred. This phenomenon was apparently due to the adsorption of hydrogen on Ni atoms followed by occupation of NiNi and CuNi bridged adsorption sites, while occupation of CuCu sites was restricted due to an energy barrier to migration.  相似文献   

9.
Calculations of the tight-binding parameters of the NiNi, NiH, NiO and NiS bonds have been carried out using wavefunctions and effective potentials obtained from an atomic self consistent Hartree - Fock - Slater calculation. Results for the NiNi bond agree with the available parameters obtained through interpolation schemes. A study has also been made, of the variations of parameters with bond length and the parameters are shown to decrease rapidly with increasing distance.  相似文献   

10.
The relaxed energy and structure of (0 0 1) twist grain boundary (GB) in noble metals Au, Ag and Cu are simulated by the MAEAM. In-boundary translation between two adjacent grains results in a periodic energy variation and the period is a square with the side length LΣ/Σ. The lowest energy appears when the two grains are translated relatively to either corner or center of the periodic square. The relaxed GB energy increases smoothly for low-angle boundaries and levels off for larger-angle boundaries except a cusp appeared at θ = 36.87° (Σ = 5). After relaxation, the symmetry of the GB structure is not changed but the displacement of the atoms parallel to the GB plane decreases with increasing the distance of the atoms from the GB plane.  相似文献   

11.
Atomistic simulations of segregation to [001] 5 twist boundaries in Cu–Ni, Au–Pd, and Ag–Au alloy systems have been performed for a wide range of temperatures and compositions within the solid solution region of these alloy phase diagrams. In addition to the grain boundary segregation profiles, grain boundary free energies, enthalpies, and entropies were determined. These simulations were performed within the framework of the free energy simulation method, in which an approximate free energy functional is minimized with respect to atomic coordinates and atomic site occupation. For all alloy bulk compositions (0.05 C 0.95) and temperatures (400 T (K) 1,100) examined, Cu and Au segregates to the boundary in the Cu–Ni and Au–Pd alloy systems, respectively; although in the Ag–Au alloys, the majority element segregates to the boundary. The width of the segregation profile is limited to approximately three to four (002) atomic planes. The classical theories for the segregation, and the effects of the relaxation with respect to either the atomic positions or the atomic concentrations, are discussed. The boundary thermodynamic properties depend sensitively on the magnitude of the boundary segregation, and some of them are shown to vary linearly with the magnitude of the grain boundary segregation.  相似文献   

12.
Nanocrystalline materials contain many atoms at and near grain boundaries. Sufficient numbers of Mössbauer probe atoms can be situated in grain boundary environments to make a clear contribution to the measured Mössbauer spectrum. Three types of measurements on nanocrystalline materials are reported here, all using Mössbauer spectrometry in conjunction with X-ray diffractometry, transmission electron microscopy, or small angle neutron scattering. By measuring the fraction of atoms contributing to the grain boundary component in a Mössbauer spectrum, and by knowing the grain size of the material, it is possible to deduce the average width of grain boundaries in metallic alloys. It is found that these widths are approximately 0.5 nm for fcc alloys and slightly larger than 1.0 nm for bcc alloys. Chemical segregation to grain boundaries can be measured by Mössbauer spectrometry, especially in conjunction with small angle neutron scattering. Such measurements on Fe-Cu and Fe3Si-Nb were used to study how nanocrystalline materials could be stabilized against grain growth by the segregation of Cu and Nb to grain boundaries. The segregation of Cu to grain boundaries did not stabilize the Fe-Cu alloys against grain growth, since the grain boundaries were found to widen and accept more Cu atoms during annealing. The Nb additions to Fe3Si did suppress grain growth, perhaps because of the low mobility of Nb atoms, but also perhaps because Nb atoms altered the chemical ordering in the alloy. The internal structure of grain boundaries in nanocrystalline materials prepared by high-energy ball milling is found to be unstable against internal relaxations at low temperatures. The Mössbauer spectra of the nanocrystalline samples showed changes in the hyperfine fields attributable to movements of grain boundary atoms. In conjunction with SANS measurements, the changes in grain boundary structure induced by cryogenic exposure and annealing at low temperature were found to be somewhat different. Both were consistent with a sharper density gradient between the crystalline region and the grain boundary region.  相似文献   

13.
Raman scattering has been employed to study the temperature and composition dependence of the vibrational modes for the glass-forming oxyhalide mixtures xLiCl–(1–x)TeO2 (x=0, 0.2, 0.3, 0.35, 0.5 and 0.67) in the glassy, supercooled and liquid state up to 600 °C. The analysis has shown that the network structure of the glass/melt is formed by mixing trigonal bipyramid and trigonal pyramid units. The change of LiCl content and/or temperature results to conversion of the trigonal bipyramid to trigonal pyramid units with a varying number of non-bridging chlorine and oxygen atoms. The fraction of the terminal oxygen atoms doubly bonded to tellurium versus temperature has been directly estimated from the Raman spectroscopic results with the aid of a structural model concerning the tellurite network systems. A well-resolved Boson peak (BP) dominates the low-frequency Raman spectra. The temperature dependence of the maximum of the BP has also been determined and discussed in the framework of its microscopic origin.  相似文献   

14.
Studies of benzene (C6H6 and C6D6) adsorption have been performed by high resolution electron energy loss spectroscopy (HRELS) and LEED experiments on nickel (100) and (111) single crystal faces at room temperature. Chemisorption induces ordered structures, c(4 × 4) on Ni(100) and (2√3 × 2√3)R30° on Ni(111), and typical energy loss spectra with 4 loss peaks accurately identified with the strongest infrared vibration bands of the gazeous molecules. Benzene chemisorption preserves the aromatic character of the molecule and involves respectively 8 nickel surface atoms on the (100) face and 12 on the (111) face by adsorbed molecule. The interaction takes place via the π electrons of the ring. Significant shifts of the CHτ bending and CH stretching vibrations show a weakening of the CH bonds due to the formation of the chemisorption bond and a coupling of H atoms with the nickel substrate.  相似文献   

15.
《Surface science》1986,172(1):151-173
The electronic properties of monolayers of copper atoms adsorbed onto a Ru(0001) single crystal surface have been studied with thermal desorption spectroscopy (TDS) and high resolution electron energy loss spectroscopy (EELS) utilizing carbon monoxide (CO), dioxygen (O2), methanol (CH3OH), and to some extent water (H2O) as chemical probes. Whereas a three-monolayer-thick film exhibits most properties of a Cu(111) crystal distinct deviations are found at lower Cu coverages. TDS as well as EELS show a weakened RuCO bond and a strengthened CuCO bond as a result of metal-metal interaction. The stronger CuCO bond is accompanied by a higher probability for O2 dissociation. The mobilities of copper and oxygen atoms are such that annealing to 650 K produces an overlayer structure which is independent of adsorption sequence: Cu/O2 or O2/Cu, but where RuO as well as CuO vibrations can be identified. Methanol adsorbs reversibly on a monolayer of copper atoms. Metal bound methoxy species are formed in the presence of oxygen atoms. The decomposition paths of such methoxy intermediates alter towards more formaldehyde (CH2O) relative to CO with increasing copper and methoxy coverages.  相似文献   

16.
Density functional theory (DFT) for generalized gradient approximation calculations has been used to study the adsorption of atomic oxygen and water molecules on Ni(1 1 1) and different kind of Ni-Cr(1 1 1) surfaces. The fcc hollow site is energetically the most favorable for atomic oxygen adsorption and on top site is favorable for water adsorption. The Ni-Cr surface has the highest absorption energy for oxygen at 6.86 eV, followed by the hcp site, whereas the absorption energy is 5.56 eV for the Ni surface. The Ni-O bond distance is 1.85 Å for the Ni surface. On the other hand, the result concerning the Ni-Cr surface implies that the bond distances are 1.93-1.95 Å and 1.75 Å for Ni-O and Cr-O, respectively. The surface adsorption energy for water on top site for two Cr atom substituted Ni-Cr surface is 0.85 eV. Oxygen atoms prefer to bond with Cr rather than Ni atoms. Atomic charge analysis demonstrates that charge transfer increases due to the addition of Cr. Moreover, a local density of states (LDOS) study examines the hybridization occurring between the metal d orbital and the oxygen p orbital; the bonding is mainly ionic, and water bonds weakly in both cases.  相似文献   

17.
陈征征  王崇愚 《中国物理》2006,15(3):604-609
The effect of Re segregation on the α-Fe ∑5 [001] (010) grain boundary (GB) is investigated by using a software called DMol and discrete variational method (DVM). Based on the Rice Wang model, the calculated segregation energy and defect formation energy show that Re is a strong cohesive enhancer. We also calculated the interatomic energy (IE) and bond order (BO) of several atomic pairs to investigate the mechanism of the cohesive effect of Re microscopically and locally. The results show that IEs of atomic pairs formed by those atoms which cross the plane of GB are strengthened due to the segregation of Re, while the BOs of the corresponding pairs are slightly decreased. This discrepancy demonstrates that IE which contains the Hamiltoniaa of interaction between atoms is a good quantity to describe the bonding strength. The analysis suggests that the electronic effect between atomic pair which comes directly from Hamiltonian is the key factor, The charge density is also presented, and the result indicates that the bonding strength between the Fe atoms on the GB is enhanced due to the segregation of Re, which is consistent with the analysis of IE.  相似文献   

18.
王奇  唐法威  侯超  吕皓  宋晓艳 《物理学报》2019,68(7):77101-077101
基于第一性原理构建了钨基合金体系的溶质偏聚模型,以W-In体系为例研究了不同浓度下溶质的晶界偏聚行为和成键特征,从电子结构层面揭示了W-In体系的键合作用,预测了W-In体系界面稳定性随溶质浓度的变化规律.结合键布居、电荷密度、差分电荷密度和态密度等电子结构分析,发现了W-In体系中溶质原子在偏聚过程中的键性转变特征,阐明了W-In键由晶粒内部的离子键过渡为晶界区域强共价键的微观机理.模型计算首次得到了W-In体系中溶质本征偏聚能随In浓度的非单调变化规律,结合键合作用和能量分析揭示了溶质浓度对本征偏聚能的影响机制.计算预测了W-In体系达到高热稳定性所需的最佳溶质浓度范围和应避开的溶质浓度范围.本研究为具有高温稳定性的钨基合金材料的设计与制备提供了理论基础和定量化指导.  相似文献   

19.
First-principles fully relaxed tensile and shear test simulations were performed on Σ10(1124)/[1100] tilt Mg grain boundary (GB) models, with and without H segregation, to investigate mechanisms of H embrittlement of Mg. Strengthening as a result of covalent-like characteristics of Mg-H bonds prevailed over weakening of Mg-Mg bonds resulting from charge transfer; as a result, an H atom strengthened the GB. In addition, because the strong Mg-H bonds suppressed macroscopic GB fracture, elongation to failure was not reduced by H segregation. However, the resistance to GB shearing was increased by H segregation. It is therefore suggested that H segregation enhances crack growth at the GB, because dislocation emission from the crack tip is suppressed, resulting in H embrittlement of Mg.  相似文献   

20.
The phase diagram of the GaInSb system in the (Ga + In)-rich region was calculated using the model of regular associated solutions (RAS). The calculated liquidus temperature and solidus composition surfaces were examined by a goodness of fit test derived for an (n + 1)-dimensional surface for which all the variables are subject to experimental errors. The results obtained using the RAS model were found to be in good agreement with the experimental data. It was also shown that the calculated phase diagram is compatible with the enthalpies of mixing measured for the GaIn, GaSb and InSb binary systems. Expressions were derived for the partial derivatives of the concentration of the various species in the liquid with respect to the temperature. Using these expressions it can be shown that, upon cooling, a liquid containing more (Ga + In) than Sb becomes super-saturated with regard to the atomic (uncombined) species and under-saturated with regard to the molecular species. Hence, the mechanism of crystallization proceeds via the addition of atomic layers to the surface of the crystal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号