首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The system Cu(210)-O2 has been examined using LEED and AES, combined with optical simulation of diffraction patterns to investigate the detailed structure of the adsorbed layer. Exposure at 300 K and 5 × 10?9 Torr resulted in LEED patterns showing pronounced streaks. The corresponding structures are believed to require an adsorption mechanism in which O2 dissociation can occur only at a limited number of surface sites and in which O atoms after dissociation diffuse over quite large distances (?10 nm) before becoming chemisorbed. Heating these structures to 500–600 K produced a sharp (2 × 1) pattern; this step is thought to involve equilibration of the adsorbed layer. Further combinations of exposure (?1 × 10?6Torr) and heating (up to 500 K) resulted in a series of (2 × 1) and (3 × 1) patterns, while heating to 800 K at any stage of the oxygen interaction regenerated the clean surface.  相似文献   

2.
Y. Zhu  L.D. Schmidt 《Surface science》1983,129(1):107-122
Temperature programmed desorption (TPD) of CO is used to determine surface areas, binding states, and changes upon oxidation for 10–1000 Å particles of Pt, Rh, and Pt-Rh alloy on amorphous SiO2. A low area sample configuration is used to obtain rapid and uniform heating and cooling in an ultra-high vacuum system. It is shown that both metals exhibit a higher CO binding state for small particles, but, as particle size increases, this state disappears and is replaced by a more weakly bound state. These states are suggested to be associated with (111) and higher surface free energy planes on these surfaces, heating Rh above 700 K in O2 at 10?6 Torr produces an oxide on which the CO saturation coverage is at least a factor of 10 lower than on the reduced surface. For Pt, oxidation produces only a small decrease in CO coverage, although the binding energy of CO increases on the oxygen treated surface. The difference in desorption temperatures for CO on Pt and Rh is consistent with previous experiments which show that an oxidation-reduction cycle produces a surface layer which is enriched in Rh and that the oxidized alloy contains no Pt atoms.  相似文献   

3.
The adsorption of oxygen on Rh(111) at 100 K has been studied by TDS, AES, and LEED. Oxygen adsorbs in a disordered state at 100 K and orders irreversibly into an apparent (2 × 2) surface structure upon heating to T? 150 K. The kinetics of this ordering process have been measured by monitoring the intensity of the oxygen (1, 12) LEED beam as a function of time with a Faraday cup collector. The kinetic data fit a model in which the rate of ordering of oxygen atoms is proportional to the square of the concentration of disordered species due to the nature of adparticle interactions in building up an island structure. The activation energy for ordering is 13.5 ± 0.5 kcalmole. At higher temperatures, the oxygen undergoes a two-step irreversible disordering (T? 280 K) and dissolution (T?400K) process. Formation of the high temperature disordered state is impeded at high oxygen coverages. Analysis of the oxygen thermal desorption data, assuming second order desorption kinetics, yields values of 56 ± 2 kcal/ mole and 2.5 ± 10?3 cm2 s?1 for the activation energy of desorption and the pre-exponential factor of the desorption rate coefficient, respectively, in the limit of zero coverage. At non-zero coverages the desorption data are complicated by contributions from multiple states. A value for the initial sticking probability of 0.2 was determined from Auger data at 100 K applying a mobile precursor model of adsorption.  相似文献   

4.
Temperature programmed desorption (TPD) and temperature programmed adsorption (TPA) have been used to characterize adsorbate coverages during and after NO decomposition on polycrystalline Pt foils at pressures between 10?4 and 30 Torr. The densities and stoichiometries of tightly bound species were determined after reaction by TPD of NO, N2, and O2 following cooling and pumpdown to <10?8 Torr. For characterization during reaction at pressures up to 10?3 Torr the ribbon was flashed inside a 35 cm3 reaction cell, and desorption and adsorption spectra of all species were recorded. Using digital acquisition of pressures versus time, peaks as small as 10?3 of the background pressure could be analyzed. By flashing to different fixed temperatures, adsorption isobars during reaction were determined. These measurements show that there is a tightly bound stoichiometric layer of N and O (perhaps undissociated) and that the reactive state is weakly bound and appears to be strongly inhibited by molecular oxygen. This model also agrees with reaction rate measurements at these pressures.  相似文献   

5.
The damaging effects of electron beams during the acquisition of electron spectra have long been an obstacle in surface analysis. In order to understand the physico-chemical processes which take place under electron irradiation in an AlO system, we have carried out an experiment in which artifices, such as heating, charging, and gas contamination, were absent. We have observed with Auger Electron Spectra increases of the oxidation extent and the oxygen concentration on an oxygen exposed (111) textured polycrystalline surface under electron irradiation (5 keV, 9 × 10?5 A/cm2). These increases were not observed on a clean surface, and were very feeble on a (100) single crystal surface. The increase of oxygen concentration was independent of residual gas pressure (3 × 10?9 to 6 × 10?10 Torr) and its composition; and therefore cannot be explained by gas contamination during the experimental period (about 70 min). We attribute the increase of oxidation degree to the transition of chemisorbed oxygen atoms into oxide through direct momentum transfer from the incident electrons. We suggest that the increase of oxygen within the irradiated area is due to the surface diffusion of chemisorbed oxygen atoms from outside the irradiated area. These oxygen atoms are excited by the electrons scattered from the vacuum chamber walls and gain energy through Franck-Condon type mechanism. The absence of chemisorbed oxygen atoms on (100) surface explains the near absence of these increases on this surface.  相似文献   

6.
The adsorption of oxygen on Ag(111) has been studied by ellipsometry in conjunction with AES and LEED. The oxygen pressure varied between 10?5 and 10?3 Torr and the crystal temperature between room temperature and 250° C. Changes in the Auger spectrum and the LEED pattern upon oxygen adsorption are very small. Oxygen coverages were derived from the changes in the ellipsometric parameter Δ. At room temperature a maximum coverage is reached within a few minutes. Its value increases with the damage produced by the preceding argon ion bombardment. The sticking coefficient derived from the initial rate of Δ-change amounts to 3 × 10?5 for well-annealed surfaces and 2.5 ? 5 × 10?4 for damaged surfaces. After evacuation no desorption takes place. Other types of adsorption, associated with much larger changes in Δ, were observed upon bombardment with oxygen ions and with oxygen activated by a hot filament. The reaction of CO with adsorbed oxygen was studied ellipsometrically at room temperature in the CO pressure range 10?7–10?6 Torr. The initial reaction rate is proportional to the CO pressure. The reaction probability (number of oxygen atoms removed per incident CO molecule) is 0.36.  相似文献   

7.
The adsorption and desorption of O2 on a Pt(111) surface have been studied using molecular beam/surface scattering techniques, in combination with AES and LEED for surface characterization. Dissociative adsorption occurs with an initial sticking probability which decreases from 0.06 at 300 K to 0.025 at 600 K. These results indicate that adsorption occurs through a weakly-held state, which is also supported by a diffuse fraction seen in the angular distribution of scattered O2 flux. Predominately specular scattering, however, indicates that failure to stick is largely related to failure to accommodate in the molecular adsorption state. Thermal desorption results can be fit by a desorption rate constant with pre-exponential νd = 2.4 × 10?2 cm2 s?1 and activation energy ED which decreases from 51 to 42 kcal/mole?1 with increasing coverage. A forward peaking of the angular distribution of desorbing O2 flux suggests that part of the adsorbed oxygen atoms combine and are ejected from the surface without fully accomodating in the molecular adsorption state. A slight dependance of the dissociative sticking probability upon the angle of beam incidence further supports this contention.  相似文献   

8.
The chemisorption and reactivity of O2 and H2 with the sulfided Mo(100) surface and the basal (0001) plane of MoS2 have been studied by means of Thermal Desorption Spectroscopy (TDS), Auger Electron Spectroscopy (AES) and Low Energy Electron Diffraction (LEED). These studies have been carried out at both low (10?8–10?5Torr) and high (1 atm) pressures of O2 and H2. Sulfur desorbs from Mo(100) both as an atom and as a diatomic molecule. Sulfur adsorbed on Mo(100) blocks sites of hydrogen adsorption without noticeably changing the hydrogen desorption energies. TDS of 18O coadsorbed with sulfur on the Mo(100) surface produced the desorption of SO at 1150 K, and of S, S2 and O, but not SO2. A pressure of 1 × 10?7 Torr of O2 was sufficient to remove sulfur from Mo(100) at temperatures over 1100 K. The basal plane of MoS2 was unreactive in the presence of 1 atm of O2 at temperatures of 520 K. Sputtering of the MoS2 produced a marked uptake of oxygen and the removal of sulfur under the same conditions.  相似文献   

9.
The adsorption and desorption of nitrogen on a platinum filament have been studied by thermal desorption techniques. Nitrogen adsorption becomes significant only after any carbon contamination is removed from the surface by heating the platinum filament in oxygen, and after the CO content in the background gas is reduced substantially. At room temperature nitrogen populates an atomic tightly bound β-state, E = 19 kcal mole?1. The saturation coverage of the (3-state is 4.5 × 1014 atoms cm?2. Formation of the (β-state is a zero order process in the pressure range studied. At 90 K two additional α1- and α2-desorption peaks are observed. The activation energy for desorption for the α2-state is 7.4 kcal mole?1 at low coverage decreasing to 3 kcal mole?1 at saturation of this state, 6 × 10 molecules cm?2. The maximum total coverage in the α-states was 1.2 × 1015 molecules cm?2. A replacement process between the β- and α-states has been observed where each atom in the (β-state excludes two molecules from the α-state.  相似文献   

10.
When a layer of oxygen on the (110) plane of tungsten at coverages O/W≦0.5 is heated from 100 K, O+ evolution under electron impact becomes almost negligible at 600 K. On further heating, however, a slow, temperature-dependent evolution of O+ current is observed atT≳1500 K. For O/W>0.3 there is also desorption under massive bombardment. Once an equilibrium value of O+ current has been established, there is rapid adjustment to the appropriate equilibrium value when the temperature changes in the range 1500–1700 K. On cooling toT<1000 K, O+ decreases rapidly; on reheating toT>1500 K, O+ increases slowly again. Above 1700 K there is thermal desorption which is also reflected in the O+ signal. These facts indicate that there is a slow activated evolution of an electron sensitive state above 1500 K, from a reconstructed state formed by heating the low temperature layer toT≧1000 K. The latter state seems to be reformed on cooling below 1500 K.  相似文献   

11.
The adsorption of sulfur dioxide and the interaction of adsorbed oxygen and sulfur on Pt(111) have been studied using flash desorption mass spectrometry and LEED. The reactivity of adsorbed sulfur towards oxygen depends strongly on the sulfur surface concentration. At a sulfur concentration of 5 × 1014 S atoms cm?2 ((3 × 3)R30° structure) oxygen exposures of 5 × 10?5 Torr s do not result in the adsorption of oxygen nor in the formation of SO2. At concentrations lower than 3.8 × 1014 S stoms cm?2 ((2 × 2) structure) the thermal desorption following oxygen dosing at 320 K yields SO2 and O2. With decreasing sulfur concentration the amount of desorbing O2 increases and that of SO2 passes a maximum. This indicates that sulfur free surface regions, i.e. holes or defects in the (2 × 2) S structure, are required for the adsorption of oxygen and for the reaction of adsorbed sulfur with oxygen. SO2 is adsorbed with high sticking probability and can be desorbed nearly completely as SO2 with desorption maxima occurring at 400, 480 and 580 K. The adsorbed SO2 is highly sensitive to hydrogen. Small H2 doses remove most of the oxygen and leave adsorbed sulfur on the surface. After adsorption of SO2 on an oxygen predosed surface small amounts of SO3 were desorbed in addition to SO2 and O2 during heating. Preadsorbed oxygen produces variations of the SO2 peak intensities which indicate stabilization of an adsorbed species by coadsorbed oxygen.  相似文献   

12.
Tentative adsorption on clean gold (110) and (111) crystals of molecular oxygen in the pressure range 10 ?10 to 10 ?5 Torr, at a temperature varying between 100 and 800 K is reported together with the subsequent characterization of the surfaces by High Resolution Electron Energy Loss, Auger and X-ray Photoelectron Spectroscopies. It is found that oxygen does not adsorb in these UHV conditions, except when a contaminant is present on the surface. Such an interaction with a low level silicon impurity is described.  相似文献   

13.
The interaction of 2500 eV electrons with carbon monoxide chemisorbed on tungsten {100} was investigated by rapid-scan Auger electron spectroscopy. When no α state was present the O and C signals from the β state of CO were invariant during electron bombardment, giving an upper limit estimate for the electron stimulated desorption cross section, Qβ of 2 × 10?21 cm2. With the crystal at room temperature and saturated with CO, however, electron-beam induced accumulation of carbon was observed and characterised, the rate of the process being independent of CO pressure at pressures above 2 × 10?8 Torr. At 450 K the rate was found to be pressure dependent up to at least 6 × 10?7 Torr. A model is proposed for the accumulation process, which is based on electron beam dissociation of α2-CO to form adsorbed carbon and gaseous O and the creation of new sites for further α2-CO adsorption; it is in quantitative agreement with the results and yields a cross section for ESD of α2-CO (Qα2 = 1.55×10?18cm2) in close agreement with direct measurements.  相似文献   

14.
Reflection-absorption infrared spectroscopic and thermal desorption techniques have been used to study the interaction of mixtures of carbon monoxide and hydrogen with evaporated rhodium films. For equimolar mixtures near 10?9 Torr, hydrogen adsorbed much more rapidly, but long exposure times or increases in CO pressures to 10?6 Torr led to its partial, but never complete, displacement by adsorbed carbon monoxide. Hydrogen desorption spectra taken during the displacement process showed two peaks which was consistent with a cooperative interaction between adsorbed CO and H species. In contrast to previous transmission studies of CO adsorption on small rhodium particles, the present reflection—absorption infrared study of the film system showed a single absorption band at 2075 ±10 cm?1. While explanations for the discrepancy in terms of particle size effects are possible it is considered more likely that all CO molecules are linearly bound to individual Rh atoms in the present situation. In our work, increases in CO pressure (especially above 10?6 Torr) were accompanied by an upward frequency shift (from 2065 cm?1 to 2085 cm?1) and a narrowing in half width (from 25 to 17 cm?1). Several possible explanations for the latter unusual effect are discussed.  相似文献   

15.
Q.J. Zhang  R. Gomer 《Surface science》1981,109(3):567-573
The electron stimulated desorption of Xe adsorbed on the clean and on oxygen and CO covered tungsten (110) surfaces has been investigated. Only neutral Xe desorption was observed; for Xe on clean W a very small initial regime with cross section 10?17cm2 is followed by a slow decay with cross section 3×10?19cm2. The Xe yield varies nonlinearly with coverage, suggesting desorption from edges of islands or from sites with less than their full complement of nearest neighbor Xe atoms. Desorption from oxygen or CO covered surfaces results in an apparent desorption cross section identical to that of the underlying adsorbate. This results from a kicking off of Xe by electron desorbed O or CO. The true cross sections for these processes are ~10?14cm2 for Xe-0 and ~10?15 cm2 for Xe-CO. Some speculations about the mechanism, particularly the absence of ions are presented.  相似文献   

16.
The surface ionization of alkaline-earth elements on tungsten has been studied in dependence on the temperature T and the surrounding oxygen partial pressure po2; the values of the ionization efficiency β together with those of the change of the work function ΔΦ of the surface have been applied to get information about chemical reactions of the incident alkaline-earth atoms with adsorbed oxygen and about the adsorption of alkaline-earth elements on tungsten.Whereas in the high temperature range the tungsten surface is clean, towards lower temperatures (i.e. below ≈ 2500 K at po2 = 1 × 10?6 Torr or below ≈ 2000 K at po2 = = 1 × 10?9 Torr), an adsorption of oxygen increases the work function Φ and, consequently, the ionization efficiency β of incident metal atoms. A characteristic feature of the surface ionization of the alkaline-earth elements, however, is a rapid re-decrease of β with further decreasing temperature, which occurs at T ≈ 1400 K for Mg/W, T ≈ 1600 K for Ca/W, T ≈ 1800 K for Sr/W, and at T ≈ 2000 K for Ba/W. It is shown that this behaviour of β is caused by two different reasons: Whereas in the case of Mg/W a substantial Mg adsorption leading to a reduction of the work function is responsible for the decrease of β solely, the β values of Ca and Sr are additionally influenced by chemical reactions of the incident metal atoms with adsorbed oxygen resulting in an alkaline-earth oxide desorption. In the system BaW the decrease of the ionization efficiency β can be referred to BaO formation exclusively.Assuming a thermodynamic equilibrium between the different adparticles and using experimental values of the dissociation energy of the alkaline-earth oxides (in the gas phase), the results are in good agreement with theoretical calculations.  相似文献   

17.
The quasiequilibrium treatment of heterogeneous reactions suggested by Batty and Stickney1) and first order desorption kinetics are combined to formulate a model of the equilibrium coverage of oxygen on tungsten at high temperatures (1200 ? T ? 2500°K) and low oxygen partial pressures (10?9 ? PO2 ? 10?5 Torr). The results are compared with existing data and the agreement is fairly good in view of the extreme simplicity of the theoretical model.  相似文献   

18.
Electron beam assisted adsorption and desorption of oxygen was studied by Auger electron spectroscopy (AES). Beam assisted adsorption was observed on clean as well as on oxidized surfaces. After an oxygen exposure of 1000 × 10?7 Torr min and continuous irradiation with beam voltage of 1.5 kV and beam current density 2 microA mm?2, the oxygen 510 eV signal amplitude from the point of beam impact was 2.5 times greater than the signal from the non-irradiated region. The Ge 89 eV signal showed a corresponding decrease. Enhanced adsorption occurred at beam energies as low as 16.5 eV. After irradiation, the oxidized surface was not carbon contaminated. Following an oxygen exposure of 30 min at 0.1 Torr and 550°C and subsequent additional beam assisted exposure of 1000 × 10?7 Torr min, the maximum oxide thickness was about 18 Å. Beam assisted desorption did not occur from thin oxygen layers (0–510 eV signal strength less than 5 units, calculated oxide thickness about 6 Å), but occurred from thick oxides and stopped after the signal amplitude had decreased to 5 units. Based on these results, a model for the structure of the oxygen layer covering the Ge(111) surface is proposed. Mechanisms for adsorption and desorption are discussed. The implications of beam assisted adsorption and desorption on electron beam operated surface measurements (LEED, AES, ELS, APS etc.) are stressed.  相似文献   

19.
The adsorption of oxygen on Ag(110), (111), and (100) surfaces has been investigated by LEED, Auger electron spectroscopy (AES), and by the measurement of work function changes and of kinetics, at and above room temperature and at oxygen pressures up to 10?5Torr. Extreme conditions of cleanliness were necessary to exclude the disturbing influences, which seem to have plagued earlier measurements. Extensive results were obtained on the (110) face. Adsorption proceeds with an initial sticking coefficient of about 3 × 10?3 at 300 K, which drops very rapidly with coverage. Dissociative adsorption via a precursor is inferred. The work function change is strictly proportional to coverage and can therefore be used to follow adsorption and desorption kinetics; at saturation, ΔΦ ≈ 0.85 eV. Adsorption proceeds by the growth of chains of oxygen atoms perpendicular to the grooves of the surface. The chains keep maximum separation by repulsive lateral interactions, leading to a consecutive series of (n × 1) superstructures in LEED, with n running from 7 to 2. The initial heat of adsorption is found to be 40 kcal/mol. Complicated desorption kinetics are found in temperature-programmed and isothermal desorption measurements. The results are discussed in terms of structural and kinetic models. Very small and irreproducible effects were observed on the (111) face which is interpreted in terms of a general inertness of the close-packed face and of some adsorption at irregularities. On the (100) face, oxygen adsorbs in a disordered structure; from ΔΦ measurements two adsorption states are inferred, between which a temperature-dependent equilibrium seems to exist.  相似文献   

20.
We have measured the oxidation rate of tungsten and the evaporation rate of tungsten oxide in the temperature range from 900 to 1200 K at an oxygen pressure from 5 × 10?4 to 5 × 10?3 Torr. The oxidation rate increases steadily with coverage in the whole range studied. The evaporation rate decreases at high pressure and is strongly dependent on the initial conditions of the experiments. These kinetic measurements support a qualitative model of oxidation. The surface is composed of oxide islands surrounded by oxide-free regions covered only by chemisorbed oxygen atoms. On the bare regions beside the chemisorbed oxygen atoms we suppose the existence of a dilute chemisorbed oxide layer which can either enter the condensed oxide phase or evaporate. The number of the growing islands is set up at the beginning of the reaction and does not increase further. This model, consistent with kinetic results during oxidation, has been proposed first to explain results obtained by Auger electron spectroscopy and thermal desorption spectroscopy under vacuum. Faceting is particularly important in the early stages of the experiment because it can hinder the nucleation of the oxide which is a necessary step for growth. In a narrow range of temperature and oxygen pressure this inhibited nucleation leads to an enhanced evaporation rate so that the growth rate is lower. Recording this growth rate allows us to follow faceting. The parameters studied are the oxygen coverage and the temperature, experimental results are in agreement with LEED and RHEED results. Reconstruction and faceting are discussed and are believed to be caused by a smoothing of the surface during the chemisorption step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号