首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The mechanism of the recently proposed catalytic oxidation of hydrocarbons by oxygen in the presence of N-hydroxyphthalimide (NHPI) was established by quantum chemical calculations, consistent with experiments.  相似文献   

2.
(Cyclopentadienyl)(triphenylphosphine)cobaltacyclopentadienes react with ground state dioxygen at 70°C and at room temperature with singlet dioxygen generated externally by microwave discharge to give 2-butene-1,4-diones. An intermediate cobalt complex of the dione has been isolated. The reaction can also be performed photochemically at room temperature.  相似文献   

3.
Cyclohexane, cyclohexene, and -pinene react with dioxygen in the liquid phase in the presence of catalysts based on platinum, heteropoly compounds (HPCs), metal-containing HPCs, and combinations of these components. In cyclohexane and -pinene oxidations occurring by an autooxidation mechanism at 160–170 and 80– 90°C, respectively, the catalysts serve to control free-radical processes. The simultaneous action of a Ru-containing phosphotungstate as a hydroperoxide decomposition catalyst and of a V-containing phosphotungstate as a scavenger of hydroxyl and alkoxyl radicals increases the cyclohexanol + cyclohexanone selectivity of cyclohexane oxidation without yielding a hydroperoxide. A Pt/C catalyst affords an increase in -pinene conversion in a fixed time. In combination with ammonia or tetrahexylammonium chloride admixtures, it retards side reactions and raises the yield of verbenol and verbenone, which are the most valuable products. During cyclohexane, cyclohexene, and -pinene oxidation with an O2-H2 mixture at room temperature, no free-radical chain reaction develops in the Pt-HPC system and reactive intermediates form and interact, involving the HPC, with hydrocarbons on the surface of the platinum catalyst. Analysis of reactivity and of the composition of substrate oxidation products suggests a mechanism for the conjugate oxidation of hydrocarbons in systems with various HPCs. In this mechanism, HPC composition determines, to a large extent, the nature of reactive intermediates, which may be peroxides or radicals bound to platinum or HPC. The properties of catalytic systems in oxidation with O2-H2 mixtures can be controlled by selecting an appropriate HPC as the modifying component.__________Translated from Kinetika i Kataliz, Vol. 46, No. 2, 2005, pp. 219–232.Original Russian Text Copyright © 2005 by N. Kuznetsova, L. Kuznetsova, Kirillova, Detusheva, Likholobov, Khramov, Ansel.  相似文献   

4.
The complex [Cu2(L-66)]2+ (L-66 = a,a'-bis?bis[2-(1'-methyl-2'-benzimidazolyl)ethyl]amino?-m-xylene) undergoes fully reversible oxygenation at low temperature in acetone. The optical [lambda(max) = 362 (epsilon 15000), 455 (epsilon 2000), and 550 nm (epsilon 900M(-1)cm(-1))] and resonance Raman features (760 cm(-1), shifted to 719cm(-1)(-1) with 18O2) of the dioxygen adduct [Cu2(L-66)(O2)]2+ indicate that it is a mu-eta2:eta2-peroxodicopper(II) complex. The kinetics of dioxygen binding, studied at - 78 degrees C, gave the rate constant k1 = 1.1M(-1) 5(-1) for adduct formation, and k(-1) =7.8 x 10(-5)s(-1), for dioxygen release from the Cu2O2 complex. From these values, the O2 binding constant K= 1.4 x 10(4)M(-1) at -78 degrees C could be determined. The [Cu2(L-66)(O2)]2+ complex performs the regiospecific ortho-hydroxylation of 4-carbomethoxyphenolate to the corresponding catecholate and the oxidation of 3,5-di-tert-butylcatechol to the quinone at -60 degrees C. Therefore, [Cu2(L-66)]2+ is the first synthetic complex to form a stable dioxygen adduct and exhibit true tyrosinase-like activity on exogenous phenolic compounds.  相似文献   

5.
The active sites of metalloenzymes are often deeply buried inside a hydrophobic protein sheath, which protects them from undesirable hydrolysis and polymerization reactions, allowing them to achieve their normal functions. In order to mimic the hydrophobic environment of the active sites in bacterial monooxygenases, diiron(II) compounds of the general formula [Fe2([G-3]COO)4(4-RPy)2] were prepared, where [G-3]COO- is a third-generation dendrimer-appended terphenyl carboxylate ligand and 4-RPy is a pyridine derivative. The dendrimer environment provides excellent protection for the diiron center, reducing its reactivity toward dioxygen by about 300-fold compared with analogous complexes of terphenyl carboxylate ([G-1]COO-) ligands. An FeIIFeIII intermediate was characterized by electronic, electron paramagnetic resonance, M?ssbauer, and X-ray absorption spectroscopic analyses following the oxygenation of [Fe2([G-3]COO)4(4-PPy)2], where 4-PPy is 4-pyrrolidinopyridine. The results are consistent with the formation of a superoxo species. This diiron compound, in the presence of dioxygen, can oxidize external substrates.  相似文献   

6.
Several manganese (III) complexes (MnIIILx) in combination with tert-butyl hydroperoxide (t-BuOOH) activate dioxygen (O2) to oxygenate cyclohexene (c-C6H10) to its ketone, alcohol, and epoxide. The product profiles depend on the ligand and solvent matrix. With picolinate (PA), bipyridine (bpy), or triphenylphosphine oxide (OPPh3) as the ligand in py/HOAc (2:1 molar ratio) dominant product is the ketone [c-C6H8(O)] whereas Schiff–base complexes produce c-C6H8(O), c-C6H9(OH) and the epoxide in almost equal yields. However, in MeCN c-C6H8(O) is the dominant product for all of the complexes.  相似文献   

7.
《Tetrahedron letters》1988,29(2):205-208
A biomimetic electrochemical system using manganese tetraphenylporphyrin chloride and imidazole as catalysts and acetic acid as a proton donor, activates dioxygen and epoxidizes various alkenes with good yields based on consumed pairs of electrons (around 50%) and rates (around 1 turnover per min), and oxidizes alkanes into alcohols and ketones.  相似文献   

8.
Novel, economic and environmentally friendly one-pot three-component Knoevenagel/hydrogenation (K/H) and four-component Knoevenagel/hydrogenation/alkylation (K/H/A) reactions of ketones, CH-acids, dihydropyridines and alkyl halides using proline and proline/metal carbonate catalysis, respectively, have been developed. Many of the products of these K/H and K/H/A reactions have direct applications in pharmaceutical chemistry.  相似文献   

9.
We report the selective formation of endoperoxides by aerobic TiO2 photocatalysis through the cyclic addition of dioxygen and a non-conjugated diene, the first heterogeneous catalytic system for endoperoxide synthesis. This green protocol does not require any additive and the photocatalyst is abundant and recyclable, providing a yield up to 64% and >20:1 diastereoselectivity. Mechanistic investigations were carried out by using product analysis, kinetic studies, O-18 labelling experiments, electron-spin resonance and a set of quenching experiments. Superoxide (but not singlet oxygen, triplet oxygen or peroxide) is directly involved in the reaction cascade to form the endoperoxide product. The new findings may be helpful for future for designing eco-friendly and energy sustainable strategies for selective oxygenation reactions using semiconductors, O2 and sunlight.  相似文献   

10.
Recent studies on iron-based heterogeneous catalysts for selective oxidation of hydrocarbons are reviewed with emphasis on the partial oxidation of methane and the epoxidation of alkenes. High dispersion of iron sites is essentially important for the selective oxidations. The effective catalysts include immobilized or encapsulated iron complexes, iron-doped metal oxides such as Fe3+-doped silica, iron-containing microporous and mesoporous materials, and iron-containing compounds with isolated iron sites typified by iron phosphate. The structure-reactivity relationships and the factors affecting the catalytic performances are discussed with the aim to uncover the requirements of the active iron sites in target-selective oxidation.  相似文献   

11.
Recent studies on iron-based heterogeneous catalysts for selective oxidation of hydrocarbons are reviewed with emphasis on the partial oxidation of methane and the epoxidation of alkenes. High dispersion of iron sites is essentially important for the selective oxidations. The effective catalysts include immobilized or encapsulated iron complexes, iron-doped metal oxides such as Fe3+-doped silica, iron-containing microporous and mesoporous materials, and iron-containing compounds with isolated iron sites typified by iron phosphate. The structure-reactivity relationships and the factors affecting the catalytic performances are discussed with the aim to uncover the requirements of the active iron sites in target-selective oxidation.  相似文献   

12.
Polycyclic aromatic hydrocarbons (PAHs) find multiple applications ranging from fabric dyes to optoelectronic materials. Hydrogenation of PAHs is often employed for their purification or derivatization. However, separation of PAHs from their hydrogenated analogues is challenging because of their similar physical properties. An example of such is the separation of 9,10-dihydroanthracene from phenanthrene/anthracene which requires fractional distillation at high temperature (∼340 °C) to obtain pure anthracene/phenanthrene in coal industry. Herein we demonstrate a new approach for this separation at room temperature using a water-soluble interlocked cage (1) as extracting agent by host–guest chemistry. The cage was obtained by self-assembly of a triimidazole donor L·HNO3 with cis-[(tmeda)Pd(NO3)2] (M) [tmeda = N,N,N′,N′-tetramethylethane-1,2-diamine]. 1 has a triply interlocked structure with an inner cavity capable of selectively binding planar aromatic guests.

We report here a triply interlocked cage with the ability to encapsulate planar guests in aqueous medium. This property was then employed to efficiently separate planar and non-planar aromatic hydrocarbons by aqueous extraction.  相似文献   

13.
A comprehensive structural characterization of the colorless and yellow forms of N-hydroxyphthalimide (NHP), the deuterated form (NDP), and the ethoxylated form (ethoxy-NHP) has been carried out using single-crystal X-ray diffraction, FTIR and Raman spectroscopies, and scanning electron microscopy. Both NHP and NDP forms crystallize in the monoclinic space group (P21/c, No. 14). The various forms of NHP differ in the way in which the molecules adjoin one another through their N-hydroxyl groups and how the carbonyls of the isoindole-1,3-dione ring differ through intermolecular hydrogen bonding. Although the hydrogen bonding about the b axis is virtually the same, the isoindole-1,3-dione ring experiences different twists for the two NHP forms. Both the colorless and yellow forms of NHP exhibit strong intermolecular hydrogen bonding between O(3) and H(1). In the yellow form, the N-hydroxyl group is significantly out of the plane (approximately 1.19 degrees ), but the N-hydroxyl group in the colorless form is only approximately 0.06 degrees out of the plane. Both forms of NHP reveal an infinite chain of intermolecular hydrogen-bonded molecules in the direction of the b axis; however, the molecules are ordered differently within the unit cells. The hydrogen-bond geometry for the yellow form of NHP is O(2)-H(1)...O(3), with an angle of 185 degrees , intermolecular distances of O(2)...O(3) = 2.68 A and H(1)...O(3) = 1.70 A, and an intramolecular hydrogen bond of O(1)...H(1) = 1.17 A. The colorless form of NHP shows an intermolecular hydrogen-bond geometry between O(3) and H(1) with a distance of 1.78 A; the O(2)-O(3) distance is 2.71 A. The O(2)-H(1)...O(3) angle is 159 degrees, and the intramolecular distance is O(1)...H(1) = 0.97 A. The N-ethoxy derivative of NHP crystallizes in an orthorhombic space group (Pnma, No. 62) and exhibits no hydrogen bonding, displaying a strong head-to-tail stacking of the planar rings along the needle axis direction.  相似文献   

14.
The effect of the nature of the chelate center in NiII complexes on their catalytic activity in the selective oxidation of ethylbenzene by dioxygen to α-phenylethyl hydroperoxide in the presence of nickel bis(acetylacetonate) (chelate center Ni(O,O)2) and nickel bis(enaminoacetonate) (chelate center Ni(O,NH)2) was studied. The efficiency of selective oxidation of ethylbenzene increases substantially in the presence of the chelate with the Ni(O,NH)2 active center as a catalyst, which is mainly due to the transformation of the catalyst into more active species during the oxidation process. The mechanism of transformation of nickel bis(enaminoacetonate) under the action of dioxygen was suggested. The sequence of formation of the reaction products at different stages of the catalytic process was determined. The activity of the nickel complex with the Ni(O,NH)2 chelate center and the products of its transformation in the elementary stages of chain oxidation of ethylbenzene is discussed. Translated fromIzvestiya Akedemii Nauk. Seriya Khimicheskaya, No. 1, pp. 55–60, January, 1999.  相似文献   

15.
Highly crosslinked polymer networks were characterized in terms of structural differences based on the crosslinked network structures with their chromatographic molecular retentivity for some polyaromatic hydrocarbons (PAHs). Because PAHs and some sterically bulky solutes were used in the chromatographic characterization, tiny differences in the crosslinked polymer networks were observed in terms of the chromatographic molecular retentivity. Ethylene dimethacrylate afforded molecular retentivity for anthracene, and this recognition ability changed with the polymerization time. In addition, 1,4‐butanediol dimethacrylate afforded molecular retentivity for pyrene, and this retentivity was larger than that for anthracene. The polymerization methods also affected the resulting polymer networks drastically. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2556–2566, 2005  相似文献   

16.
The oxidation of alkylarenes by dioxygen in the presence of complexes of nickel and cobalt with macrocyclic ethers 18-crown-6 and 15-crown-5 was studied. The conditions for selective catalytic oxidation of ethylbenzene to α-phenylethyl hydroperoxide were determined. The kinetics of the accumulation of all oxidation products was studied. The order of the formation of the products at different stages of chain oxidation was determined. The activity of the complexes at the elementary stages of the chain oxidation of ethylbenzene is discussed. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 689–693, April. 1997.  相似文献   

17.
醇的氧化产品(醛和酸)是精细化工中的重要中间体.醇类的选择性氧化无论是在基础研究还是在工业应用方面都具有非常重要的意义.传统的方法是使用化学计量的氧化剂(如:高氯酸盐,重铬酸盐,高锰酸盐,过氧酸)来氧化醇.但是,这些氧化剂具有强腐蚀性,价格较昂贵,有些氧化剂还具有很强的毒性或者反应后产生大量重金属废液.而以分子氧作为氧化剂在温和条件下实现醇到醛的氧化具有更好的经济性也更环保.在过去几十年里,科学家们发展了许多催化体系来活化氧气分子.这些体系大部分是基于钌、钯、铜和钛等金属催化剂.近年,考虑成本和环境因素,越来越多的科学家把目光投向无金属催化剂来实现醇的氧化.石墨型氮化碳(g-C3N4)是二维层状类石墨结构,层内原子以共价键相连,层与层之间由于分子间作用而堆叠在一起.在g-C3N4中引入介孔(mpg-C3N4)能够提高g-C3N4的比表面积,提供更多的活性位点.由于mpg-C3N4具有半导体性质(带隙宽度为2.7 eV),在可见光照射下能够激发出一个电子给氧气,氧气得到电子后生成具有较高氧化活性的?O2–.这样我们就可以在比较温和的条件下得到活性较高的氧化剂.但是?O2–活性和产量有限、并且容易被猝灭,因此我们想通过选用一个能形成比较稳定的自由基的有机分子来“传递氧化性”.基于上述思考,我们引入mpg-C3N4和N-羟基邻苯二甲酰亚胺(NHPI)作为组合催化体系实现光催化和有机催化有效的结合来催化选择性氧化醇.以苯甲醇为模型化合物、以mpg-C3N4/NHPI作为组合型催化剂、普通的钨丝灯为光源,在25 oC下通入1 atm O2,实现了醇的选择性氧化.通过电子自旋共振测试,我们探测到?O2–自由基.在只有mpg-C3N4的体系中,产生的?O2–自由基很快被猝灭,从而不能有效地氧化苯甲醇.而加入NHPI后,?O2–自由基能够夺取NHPI中O–H键的氢,形成PINO自由基.形成的PINO自由基能够在温和的反应条件下氧化苯甲醇得到苯甲醛.(图1)通过调节mpg-C3N4和NHPI的比例,我们发现增加mpg-C3N4的比例有利于苯甲醛的生成.一方面,较低的反应温度不利于生成的醛被进一步氧化成酸.另一方面,由于苯甲醇和mpg-C3N4通过O-H...N或者O-H...π相互作用能够很好的吸附到mpg-C3N4表面,从而氧化为苯甲醛;而生成的苯甲醛与mpg-C3N4的相互作用比较弱,容易脱附到溶液中,避免被进一步的氧化.同时,我们也将mpg-C3N4/NHPI催化体系拓展到其他醇类的氧化反应,同样能够得到很好的转化率和选择性.该催化体系不需要任何金属元素,利用偶合的光催化组合进行可见光催化氧化过程,反应温度低,为醇类分子的选择性氧化制备醛或者酸提供了一条有效并且环保的策略.  相似文献   

18.
《Tetrahedron letters》1986,27(25):2849-2852
The Gif system for selective hydrocarbon oxidation can be carried out replacing the zinc by a cathodic electrochemical reduction; the yields obtained and the selectivities observed are very similar.  相似文献   

19.
Visible light irradiation of the absorption band of 9-mesityl-10-methylacridinium ion (Acr+-Mes) in an O2-saturated acetonitrile (MeCN) solution containing 9,10-dimethylanthracene results in formation of oxygenation product, i.e., dimethylepidioxyanthracene (Me2An-O2). Anthracene and 9-methylanthracene also undergo photocatalytic oxygenation with Acr+-Mes to afford the corresponding epidioxyanthracenes under the photoirradiation. In the case of anthracene, the further photoirradiation results in formation of anthraquinone as the final six-electron oxidation product, via 10-hydroxyanthrone, accompanied by generation of H2O2. When anthracene is replaced by olefins (tetraphenylethylene and tetramethylethylene), the photocatalytic oxygenation of olefins affords the corresponding dioxetane, in which the O-O bond is cleaved to yield the corresponding ketones. The photocatalytic oxygenation of anthracenes and olefins is initiated by photoexcitation of Acr+-Mes, which results in formation of the electron-transfer state: Acr*-Mes*+, followed by electron transfer from anthracenes and olefins to the Mes*+ moiety together with electron transfer from the Acr* moiety to O2. The resulting anthracene and olefin radical cations undergo the radical coupling reactions with O2*- to produce the epidioxyanthracene (An-O2) and dioxetane, respectively.  相似文献   

20.
An efficient micellar electrokinetic chromatography (MEKC) method has been developed for the analysis of nine anthraquinones and bianthrones in rhubarb. A chemometric approach was used to search for the optimum conditions of separation. Those factors which were found to be significant with a screening design were further optimized with a central composite face-centered (CCF) design. Acetonitrile concentration was found to be the most influential, not only in resolution, but also in analysis time and peak asymmetry. With the optimized conditions: 15 mM sodium tetraborate/15 mM sodium dihydrogenphosphate buffer, 30 mM sodium deoxycholate, pH 8.6, 17 vol.% acetonitrile and 28 kV, nine tested analytes were baseline-separated within 14 min. The method was validated to analyze the rhubarb material. Solid-phase extraction (SPE) was manipulated to remove interfering substances. Five anthraquinones and two glycosidic bianthrones were detected and quantificated. The method should be suitable for determining these major active principles in rhubarb crude drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号