首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
标题化合物C24H29NO4?1/2C2H5OH稨2O)由香兰素、5,5-二甲基-1,3-环己二酮、醋酸铵在微波辐射下干反应并经95%乙醇重结晶而得C24H29NO4穀2(C2H5OH稨2O)晶体。结构通过单晶X-射线衍射法确定,其晶体属单斜晶系,空间群P21/n, a = 9.810(2), b = 14.516(3), c = 17.008(3) ? b = 101.03(2), V = 2377.2(8) ?, Z = 4, Mr = 427.52, Dc = 1.195 g/cm3 , m(MoKa) = 0.082 mm-1, F(000) = 920。晶体结构用直接法解出,经全矩阵最小二乘法对原子参数进行修正,最终的偏离因子为R = 0.0406, wR = 0.0892。X-射线衍射分析结果表明,吡啶环和与之稠合的2个六员环均为信封式构象。  相似文献   

2.
Organophosphorus compounds are ubiquitous in nature and they have broad applications in the fields of agriculture and medicine1-4. There has been a considerably growing interest in heterocyclic compounds due to their pharmaceutical importance and extensive application in organic synthesis, and the application of heterocycles is suggested to enhance the biological activity and/or offer other diverse properties5-7. In the previous work8, we have reported that 11-ethoxycarbonylmethyl-6-oxo-3, 4…  相似文献   

3.
Rhodium-103 chemical shifts are reported for 62 compounds, namely [Rh(X)(PPh3)3] [X = Cl, N3, NCO, NCS, N(CN)2, NCBPh3, CNBPh3, CN] and derivatives formed by replacement of a phosphine by CO, xylyl isocyanide (XNC) and pyridine and/or by oxidative addition of H2 or O2 to give trans-[Rh(X)(PPh3)2(CO)] (delta in the range -816 to -368 ppm) trans-[Rh(X)(PPh3)2(XNC)] (delta -817 to -250 ppm), cis-[Rh(X)(PPh3)2(py)] (the trans isomer is formed with X = CN, CNBPh3) (delta -233 to 170 ppm), [Rh(X)(H)2(PPh3)3] (delta -611 to 119), trans-[Rh(X)(H)2(PPh3)2(py)] (delta -30 to 566 ppm), [Rh(X)(O2)(PPh3)3] (delta 1393 to 3273 ppm) and cis-[Rh(X)(O2)(PPh3)2(py)] (delta 1949 to 3374 ppm). For the majority of these compounds data were obtained from solutions in chloroform and in toluene at temperatures of 247 and 300 K; for [Rh(X)(PPh3)3] (delta -562 to -4 ppm) data are reported at a number of temperatures in the range 195-300 K for solutions in chloroform, toluene and dichloromethane and at 300 K for solutions in DMSO. The expected trend to lower delta(103Rh) with decreasing temperature (vibrational shielding) is observed for the dichloromethane data, but data from solutions {of [Rh(X)(PPh3)3]} in chloroform and toluene show a number of features which diverge from this pattern, i.e. shifts to higher delta are found to accompany a decrease in temperature, most noticeably where X = CN and Cl [on changing the solvent from dichloromethane to chloroform changes in delta(103Rh) of up to 172 ppm are observed]. These results are interpreted in terms of a hydrogen-bonded interaction with the solvent that is enhanced by the presence of a polarizable ligand (CN, Cl). With a ligand (O2CCF3) that is only weakly polarizable the solvent dependence of delta(103Rh) is minimal.  相似文献   

4.
N,N-Dimethylaminoxygermane, H3GeONMe2, was prepared by the reaction of H3GeBr with LiONMe2 in dimethyl ether at -96 degrees C. The identity of H3GeONMe2 was proven by gas-phase IR and solution NMR spectroscopy (1H, 13C, 15N, 17O). It is an unstable volatile liquid compound. It decomposes by cleavage of a Ge-O and a Ge-H bond giving HONMe2 and an insoluble germanium hydride polymer (GeH2)n. This decomposition reaction has been modeled at the MP2/6-311G(d,p) level of theory by the homodesmotic reaction H3GeONMe2 + Ge2H6-->Ge3H8 + HONMe2, which is predicted slightly exothermic by 14 kJ mol-1. The molecular structure of H3GeONMe2 was determined by gas-phase electron diffraction supported by an ab initio geometry [MP2/6-311G(d,p)] and a force field [MP2/6-31G(d)]. The structure of the compound in the crystal lattice was determined by low-temperature crystallography using a single crystal of H3GeONMe2 grown in situ [C2H9NOGe, orthorhombic, Pnma, Z = 4, a = 8.1280(12) A, b = 9.7037(15) A, c = 7.0722(12) A]. Important bond lengths and angles (gas phase/solid state, A/deg) are Ge-O 1.785(2)/1.815(1), O-N 1.462(7)/1.460(2), N-C 1.460(4)/1.453(2), Ge-O-N 105.2(5)/104.6(1), O-N-C 105.8(5)/105.8(1), C-N-C 110.8(9)/111.2(2), Ge...N 2.587(6)/2.601(1). In the solid state the compound forms infinite chains by intermolecular Ge...O contacts of 2.808 A. The question of the attraction between Ge and N atoms is discussed with respect to reference Ge/O and N/O compounds, which have wider angles at oxygen than H3GeONMe2. For comparison the structures of the compounds H3CONMe2, H3SiONMe2, and H3SnONMe2 were also calculated to reflect the influence of the group 14 atom on the structure and to discuss the occurrence of weak E...N interactions in the compounds H3EONMe2.  相似文献   

5.
<正> The title com pound (HHOMP) has been synthesized with the pho-toinduced condensation of acetone and pyrrole in the presence of iodoaromatic hydrocarbons, and its molecular and crystal structures have been determined by X-ray analysis. C28H36N4, Mr = 428. 63, triclinic; space group P1; a =10. 165(3), b = 10. 185(2), c=13. 012(3)(?); α=85. 41(2), β=67. 84(2), γ= 89. 75(2)°; V = 1243 (?)3; Z = 2; D = 1. 145g. cm-3; μ= 0. 635cm-1; F (000) = 464. Although the HHOMP molecule twists, it is found that the four nitrogen atoms are still in a plane.  相似文献   

6.
12-Methyl-l, 2, 3, 4, 6, 7, 12, 12b-octahydroindolo[2, 3-a]quinolizine (1) is synthesized through a new route developed in our laboratory. The most important step in this synthesis is the condensation of I-methyltryptophyl bromide (4) with 2-piperidone (5) to give N -(2-(1-methylidol)-3-ylethyl)-2-piperidone (6) in good yield (70%). The synthesis of 1-benzoyl-1, 2, 3, 4, 6, 7, 12, 12b-octahydroindolo(2, 3-a]quinolizine (2) and 1-phenylcarbinol-1, 2, 3, 4, 6, 7, 12, 12b-octahydroindolo[2, 3-a]quinolizine (3) follow the method developed by Wenkert. But the yield of tetrahydropyridine 9 from partial hydrogenation of pyridinum bromide 8 with 10% palladium-charcoal is 84% which is much higher than the best yield (40%) in the literature, since the phenyl group contribute additional stability.  相似文献   

7.
Acetylplatinum(II) complexes trans-[Pt(COMe)Cl(L)2] (L = PPh3, 2a; P(4-FC6H4)3, 2b) were found to react with dialkyldisulfides R2S2 (R = Me, Et, Pr, Bu; Pr = n-propyl, Bu = n-butyl), yielding trinuclear 44 cve (cluster valence electrons) platinum clusters [(PtL)3(mu-SR)3]Cl (4). The analogous reaction of 2a-b with Ph2S2 gave SPh bridged dinuclear complexes trans-[{PtCl(L)}2(mu-SPh)2] (5), whereas the addition of Bn2S2 (Bn = benzyl) to 2a ended up in the formation of [{Pt(PPh3)}3(mu3-S)(mu-SBn)3]Cl (6). Theoretical studies based on the AIM theory revealed that type 4 complexes must be regarded as triangular platinum clusters with Pt-Pt bonds whereas complex 6 must be treated as a sulfur capped 48 ve (valence electrons) trinuclear platinum(II) complex without Pt-Pt bonding interactions. Phosphine ligands with a lower donor capability in clusters 4 proved to be subject to substitution by stronger donating monodentate phosphine ligands (L' = PMePh2, PMe2Ph, PBu3) yielding clusters [(PtL')3(mu-SR)3]Cl (9). In case of the reaction of clusters 4 and 9 with PPh2CH2PPh2 (dppm), a fragmentation reaction occurred, and the complexes [(PtL)2(mu-SMe)(mu-dppm)]Cl (12) and [Pt(mu-SMe)2(dppm)] (13) were isolated. Furthermore, oxidation reactions of cluster [{Pt(PPh3)}3(mu-SMe)3]Cl (4a) using halogens (Br2, I2) gave dimeric platinum(II) complexes cis-[{PtX(PPh3)}2(mu-SMe)2] (14, X = Br, I) whereas oxidation reactions using sulfur and selenium afforded chalcogen capped trinuclear 48 ve complexes [{Pt(PPh3)}3(mu3-E)(mu-SMe)3] (15, E = S, Se). All compounds were fully characterized by means of NMR and IR spectroscopy, microanalyses, and ESI mass spectrometry. Furthermore, X-ray diffraction analyses were performed for the triangular cluster 4a, the trinuclear complex 6, as well as for the dinuclear complexes trans-[{Pt(AsPh3)}2(mu-SPh)2] (5c), [{Pt(PPh3)}2(mu-SMe)(mu-dppm)]Cl (12a), and [{{PtBr(PPh3)}2(mu-SMe)2] (14a).  相似文献   

8.
Zhang C  Liu R  Zhang J  Chen Z  Zhou X 《Inorganic chemistry》2006,45(15):5867-5877
The reactivity of [Cp(2)Ln(mu-OH)(THF)]2 (Ln = Y (1), Er (2), Yb (3)) toward PhEtCCO, PhNCO, Cp3Ln, [Cp2Ln(mu-CH3)]2, and the LiCl adduct of Cp2Ln(n)Bu(THF)x was examined. In all cases, OH-centered reactivity is observed: complexes 1-3 react with PhEtCCO to form the O-H addition products [Cp2Ln(mu-eta1:eta2-O2CCHEtPh)]2 (Ln = Yb (5), Er (6), Y (7), respectively, for 1-3), whereas treatment of 1 with PhNCO affords the addition/CpH-elimination/rearrangement product [{Cp2Y(THF)}2(mu-eta2:eta2-O2CNPh)] (8), which contains an unusual PhNCO(2) dianionic ligand. Analogous compound [Cp2Ln(THF)]2(mu-eta2:eta2-O2CNPh) (Ln = Yb (9), Er (10)) and 8 can be obtained in a higher yield by treatment of [Cp2Ln(mu-OH)(THF)]2 with PhNCO followed by reaction with the corresponding Cp3Ln. However, attempts to prepare the corresponding heterobimetallic complex by reacting stoichiometric amounts of [Cp2Y(mu-OH)(THF)]2 with PhNCO followed by treating it with Cp3Yb are unsuccessful. Instead, only rearrangement products 8 and 9 are obtained. Furthermore, the reaction of 3 with [Cp2Yb(mu-CH3)]2 or Cp3Yb forms oxo-bridged compound [Cp2Yb(THF)]2(mu-O) (11), whereas the reaction of [Cp2ErCl]2 with Li(n)Bu followed by treatment with 2 affords unexpected mu-oxo lanthanocene cluster (Cp2Er)3(mu-OH)(mu3-O)(mu-Cl)Li(THF)4 (12). In contrast to 1 and 2, 3 shows a strong tendency to undergo the intermolecular elimination of CpH at room temperature, giving trinuclear species [Cp2Yb(mu-OH)]2[CpYb(THF)](mu3-O) (4). The single-crystal X-ray diffraction structures of 1, 2, and 4-12 are described. All the results offer an interesting contrast to transition- and main-metal hydroxide complexes.  相似文献   

9.
A series of organometallic compounds of group 13 metals supported by the sterically encumbered beta-diketiminate ligand containing hydrides, fluorides, chlorides, and bromide have been synthesized and structurally characterized. The synthetic strategy applied utilizes halide metathesis and reduction of metal chlorides to the corresponding hydrides. Thus, the reaction of LLi.OEt2 with MeMCl2 affords LM(Me)Cl (M = Al (1), Ga (2), In (3)) and LGaBr2 (4) with GaBr3. Reduction of LGa(Me)Cl with LiH.BEt3 leads to the formation of LGa(Me)H (10). Synthesis of LGaH(2) (12) has been accomplished by reacting LGaI2 (8) with LiH.BEt3. LAl(Me)Cl (1) and LAlH2 (6) have been converted to LAl(Me)F (5) and LAlF2 (7), respectively. The former was obtained in a reaction of LAl(Me)Cl with Me3SnF while the latter was isolated in a reaction of LAlH2 with BF3.OEt2. Similarly reaction of LGaI2 (8) with Me3SnF affords LGaF2 (9). Compounds reported herein have been characterized by elemental analyses, IR, NMR, EI-MS, and single-crystal X-ray diffraction techniques.  相似文献   

10.
Yang W  Chen L  Wang S 《Inorganic chemistry》2001,40(3):507-515
Two novel blue luminescent bridging ligands N,N,N',N'-tetra(2-pyridyl)-1,4-phenylenediamine (tppd) and N,N,N',N'-tetra(2-pyridyl)-1,1-biphenyl-4,4'-diamine (tpbpd) have been synthesized. Several novel lanthanide complexes containing 2,2',2"-tripyridylamine (2,2',2"-tpa), 2,2',3"-tpa, tppd, or tpbpd ligands have been synthesized and characterized structurally, which include Pr(hfa)3(2,2',2"-tpa), I, Ln(tmhd)3(2,2',3"-tpa), 2 (Ln = Dy, 2a; Eu, 2b; Tb, 2c; Sm, 2d), [Eu(tmhd)3][Pr(hfa)3](2,2',3"-tpa), 3, [Pr(hfa)3]2(tppd), 4, and [Ln(hfa)3]2(tpbpd), 5, where Ln = Pr (5a), Eu (5b), tmhd = 2,2,6,6-tetramethyl-3,5-heptanedionato, and hfa = hexafluoroacetylacetonate. The Dy(III), Eu(III), and Tb(III) complexes display a bright photoluminescence, which can be achieved by either a direct excitation process or an indirect excitation process. Compounds 2a-2d can be sublimed readily.  相似文献   

11.
Compounds formed from the reaction of N,N,N',N'-tetramethylsuccinamide (TMSA) with trivalent lanthanide salts possessing the poorly coordinating counteranions triflate (CF3SO3-) and perchlorate (ClO4-) have been prepared and examined. Structural features of these Ln-TMSA compounds have been studied in the solid phase by thermogravimetric analysis, infrared spectroscopy, and, in selected cases, by single-crystal X-ray diffraction and in solution by infrared spectroscopy. Eight-coordinate compounds, [Ln(TMSA)4]3+, derived from coordination of four succinamide ligands to the metal ion could be formed with all lanthanides examined (Ln = La, Pr, Nd, Eu, Yb, Lu). Structural analyses by single-crystal X-ray diffraction were performed for the lanthanide triflate salts Ln(C8H16N2O2)4(CF3SO3)3: Ln = La, compound 1, monoclinic, P2(1)/n, a = 11.0952(2) A, b = 19.2672(2) A, c = 24.9759(3) A, beta = 90.637(1) degrees, Z = 4, Dcalcd = 1.586 g cm-3; Ln = Nd, compound 2, monoclinic, C2/c, a = 24.6586(10) A, b = 19.3078(7) A, c = 11.1429(4) A, beta = 90.450(1) degrees, Z = 4, Dcalcd = 1.603 g cm-3; Ln = Eu, compound 3, monoclinic, C2/c, a = 24.4934(2) A, b = 19.3702(1) A, c = 11.1542(1) A, beta = 90.229(1) degrees, Z = 4, Dcalcd = 1.617 g cm-3; Ln = Lu, compound 5, monoclinic, C2/c, a = 24.2435(4) A, b = 19.6141(2) A, c = 11.2635(1) A, beta = 90.049(1) degrees, Z = 4, Dcalcd = 1.626 g cm-3. X-ray analysis was also carried out for the perchlorate salt: Ln = Eu, compound 4, triclinic, P1, a = 10.9611(2) A, b = 14.6144(3) A, c = 15.7992(2) A, alpha = 106.594(1) degrees, beta = 91.538(1) degrees, gamma = 90.311(1) degrees, Z = 2, Dcalcd = 1.561 g cm-3. In the presence of significant amounts of water, 7-coordinate compounds with mixed aquo-TMSA cation structures [Ln(TMSA)3(H2O)]3+ (Ln = Yb) and [Ln(TMSA)2(H2O)3]3+ (Ln = La, Pr, Nd, Eu, Yb) have been isolated with structural determinations by single-crystal X-ray diffraction obtained for the following species: Yb(C8H16N2O2)3(H2O)(CF3SO3)3, compound 6, monoclinic, P2(1)/n, a = 8.9443(3) A, b = 11.1924(4) A, c = 44.2517(13) A, beta = 93.264(1) degrees, Z = 4, Dcalcd = 1.735 g cm-3; Yb(C8H16N2O2)3(H2O)(ClO4)3, compound 7, monoclinic, Cc, a = 19.2312(6) A, b = 11.1552(3) A, c = 19.8016(4) A, beta = 111.4260(1) degrees, Z = 4, Dcalcd = 1.690 g cm-3; Yb(C8H16N2O2)2(H2O)3(CF3SO3)3, compound 8, triclinic, P1, a = 8.6719(1) A, b = 12.2683(2) A, c = 19.8094(3) A, alpha = 75.815(1) degrees, beta = 86.805(1) degrees, gamma = 72.607(1) degrees, Z = 2, Dcalcd = 1.736 g cm-3. Unlike in the analogous nitrate salts, only bidentate binding of the succinamide ligand to the lanthanide metal is observed. IR spectroscopy studies in anhydrous acetonitrile suggest that the solid-state structures of these Ln-TMSA compounds are maintained in solution.  相似文献   

12.
A new series of 2,3-disubstituted quinoline derivatives were synthesized from 2-chloroquinoline-3-carbaldehyde. In the reaction sequence, acetanilide was cyclized to give 2-chloroquinoline-3-carbaldehyde 1 , which was transformed to 2-(4-phenylpiperazin-1-yl)quinolin-3-carbaldehyde 2 by reaction with 4-phenylpiperazine in DMF-containing anhydrous K2CO3; then, compound 2 was oxidized by iodine in methanol, and methyl 2-(4-phenylpiperazin-1-yl)quinoline-3-carboxylate 3 was synthesized. The key intermediate 4 , 4-amino-5-[2-(4-phenylpiperazin-1-yl)quinolin-3-yl]-4H-1,2,4-triazole-3-thiol, was prepared using the ester 3 by a series of step. Reaction of 5 with various aromatic carboxylic acids or phenacyl bromides yielded 1,2,4-triazolo[3,4-b][1,3,4]thiadiazoles 5a-c and 1,2,4-triazolo[3,4-b][1,3,4]thiadiazines 6a-c , respectively. Moreover, compound 2 condensed with o-phenylenediamine to give 2-[2-(4-phenylpiperazin-1-yl)quinolin-3-yl]-1H-benzimidazole 7 . Interaction of 7 and 2-chloromethyl-5-aryl-1,3,4-oxadiazoles in the presence of K2CO3 led to the title compounds 8a-c . Furthermore, 4,5-dihydroisoxazoline derivatives 9a-c were obtained by the reaction of readily accessible starting materials including 2-(4-phenylpiperazin-1-yl)quinolin-3-carbaldehyde 2 , 1-phenyl-2-(triphenylphosphoranylidene)ethanone and hydroximoyl chlorides under mild conditions in the presence of Et3N. The hydrazone intermediates 10a-c were obtained by the condensation of 2 with aroylhydrazides in ethanol, then, refluxing in acetic anhydride yielded 3-acetyl-5-aryl-2-[2-(4-phenylpiperazin-1-yl)quinolin-3-yl]-2,3-dihydro-1,3,4-oxadiazoles 11a-c . Structures of these compounds were established by their elemental analysis, IR, 1H NMR, and mass spectral data.  相似文献   

13.
Su CY  Kang BS  Du CX  Yang QC  Mak TC 《Inorganic chemistry》2000,39(21):4843-4849
The C3-symmetric tripodal ligand tris(2-benzimidazolylmethyl)amine (ntb) and its alkyl-substituted derivatives tris(N-R-benzimidazol-2-ylmethyl)amine (R = methyl, Mentb; R = ethyl, Etntb; R = propyl, Prntb) react with various silver(I) salts to afford mononuclear [Ag(Prntb)(CF3SO3)].0.25H2O, 1, binuclear [Ag2(Mentb)2](CF3SO3)2.H2O, 2, trinuclear [Ag3(Etntb)2](ClO4)3.CH3OH, 3, and tetranuclear [Ag4(ntb)2(CH3CN)2(CF3CO2)2](CF3CO2)2.2H2O, 4. All four complexes have been characterized by elemental analyses, IR spectroscopy, and X-ray crystallography. The Ag(I) ion in 1 is coordinated to the three imine nitrogen atoms of the Prntb ligand and one oxygen atom of the trifluoromethanesulfonate anion in a distorted tetrahedral environment. Dinuclear 2 has C2 symmetry with each Ag(I) atom trigonally coordinated by two arms of one Mentb and one arm of another. Trinuclear 3 has C3 symmetry with a Ag3 regular triangle sandwiched between a pair of Etntb ligands such that one arm of each ligand is involved in linear coordination about an Ag(I) atom. In the tetranuclear complex 4, two linearly coordinated Ag(I) atoms lying on the molecular C2 axis are bridged by a pair of ntb ligands and the remaining pendant arm of each ntb ligand is attached to another Ag(I) atom whose tetrahedral coordination sphere is completed by an acetonitrile molecule and a chelating trifluoroacetate anion. Complexes 2 and 3 may be regarded as an aggregation of two tridentate ligands by a silver dimer and a trinuclear cluster with weak Ag...Ag interactions, respectively, while in 4 the aggregation of two tripodal ligands by four Ag(I) ions affords a multicomponent internal cavity. The packing modes of complexes 1-3 are dominated by weak supramolecular pi...pi and CH...pi interactions. Hexagonal or square channels are generated in 1 and 2, and a honeycomb layer structure is formed in 3 with solvate molecules and counteranions occupying the voids. The crystal structure of 4 consists of a three-dimensional network consolidated by NH...O and OH...O hydrogen bonds.  相似文献   

14.
Two new 5-formyluracil thiosemicarbazone (H(3)ut) derivatives, Me-H(3)ut (1) and Me(2)-H(3)ut (2), were synthesized by reacting thiosemicarbazides, mono- and dimethylated on the aminic nitrogen, with 5-formyluracil and were subsequently characterized. These ligands, treated with copper chloride and nitrate, afforded three complexes: [Cu(Me-H(3)ut)Cl(2)].H(2)O (3), [Cu(Me(2)-H(3)ut)Cl(2)].H(2)O (4), and [Cu(Me-H(3)ut)(NO(3))(OH(2))(2)]NO(3) (5). The crystal structures of these complexes have been determined by single-crystal X-ray diffraction. In 3 and 4, a similar pentacoordination is present; the copper atom is surrounded by the ligand SNO donor atoms and by two chloride ions. The structure of 5 consists of [Cu(Me-H(3)ut)(NO(3))(OH(2))(2)](+) cations and nitrate anions. The copper coordination (4 + 2) involves the SNO ligand atoms and a water oxygen in the basal plane; the apical positions are occupied by a second water oxygen and by an oxygen of a monodentate nitrate group. Two biochemical techniques, namely DNA titration in the UV-vis region and thermal denaturation, have been employed to probe the details of DNA binding of these compounds. Analysis of the results suggests that our compounds are able to interact with DNA by electrostatic and groove binding but not by intercalation. The compounds have been also tested in vitro on human leukemic cell line U937, but they are not able to inhibit significantly cell proliferation.  相似文献   

15.
The synthesis and coordination chemistry of two chiral tetradentate pyridylimine Schiff base ligands are reported. The ligands were prepared by the nucleophilic displacement of both bromides of 1,3-bis(bromomethyl)benzene (2) or 3,5-bis(bromomethyl)toluene (3) by the anion of (S)-valinol, followed by capping of both amine groups with pyridine-2-carboxaldehyde. Both ligands react with CoCl(2) and NiCl(2) to give [M(2)L(2)Cl(2)](2+) complexes. Remarkably, neither fluoride nor bromide ions can act as bridging ligands. The formation of [Co(2)((S)-3)(2)Cl(2)](2+) is highly diastereoselective, and X-ray crystallography shows that both metal centers in the [Co(2)((S)-3)(2)Cl(2)](CoCl(4)) complex adopt the lambda configuration (crystal data: [Co(2)(C(31)H(40)N(4)O(2))(2)Cl(2)](CoCl(4)).(CH(3)CN)(3), monoclinic, P2(1), a = 11.595(2) A, b = 22.246(4) A, c = 15.350(2) A, V = 3705(1) A(3), beta = 110.643(3) degrees, Z = 2). Structurally, the dinuclear complex can be viewed as a helicate with the helical axis running perpendicular to the [Co(2)Cl(2)] plane. The reaction of racemic 2 with CoCl(2) was shown by (1)H NMR spectroscopy to yield a racemic mixture of Lambda,Lambda-[Co(2)((S)-2)(2)Cl(2)](2+) and delta,delta-[Co(2)((R)-2)(2)Cl(2)](2+) complexes; that is, a homochiral recognition process takes place. Spectrophotometric titrations were performed by titrating (S)-3 with Co(ClO(4))(2) followed by Bu(4)NCl, and the global stability constants of [Co((S)-3)](2+) (log beta(110) = 5.7), [Co((S)-3)(2)](2+) (log beta(120) = 11.6), and [Co(2)((S)-3)(2)Cl(2)](2+) (log beta(110) = 23.8) were calculated. The results revealed a strong positive cooperativity in the formation of [Co(2)((S)-3)(2)Cl(2)](2+). Variable-temperature magnetic susceptibility curves for [Co(2)((S)-2)(2)Cl(2)](BPh(4))(2) and [Co(2)((S)-3)(2)Cl(2)](BPh(4))(2) are very similar and indicate that there are no significant magnetic interactions between the cobalt(II) centers.  相似文献   

16.
By reaction of the hexabromoheptasilane MeSi(SiMe(2)SiMeBr(2))(3) (1 a) with H(2)O, H(2)S, NH(3), and H(2)NMe the heptasilaadamantanes MeSi(SiMe(2)SiMeO)(3) (4), MeSi(SiMe(2)SiMeS)(3) (5), MeSi(SiMe(2)SiMeNH)(3) (6 a), and MeSi(SiMe(2)SiMeNMe)(3) (6 b), respectively, were prepared in good to moderate yields. Molecular structures of 4, 5, 6 a, and 6 b were determined by X-ray crystallography. The symmetry of the cages is approximately C(3v), and the geometry around the nitrogen atoms is essentially planar. Ab initio SCF/HF calculations with the 6-31G* basis set confirm these results. Reduction of MeSi(SiMe(2)SitBuBr(2))(3) (1 b) with lithium naphthalenide afforded the heptasilanortricyclene MeSi(SiMe(2)SitBu)(3) (7). The (29)Si NMR spectrum of 7 consists of three signals with chemical shifts that agree closely with values predicted by ab initio calculations. (29)Si INADEQUATE spectra also strongly support the nortricyclene structure. Ab initio SCF/HF calculations were performed for the parent molecule Si(7)H(10), and the ring strain of the cage was estimated as 168.8 kJ mol(-1) by using the homodesmic reaction Si(7)H(10) + 3 Si(2)H(6)-->Si(13)H(28). Compound 1 a also served as the starting material for the preparation of first-generation dendrimer 2 a by reaction with six equivalents of Ph(2)MeSiLi. Subsequent protodearylation with HBr and reaction with (Me(2)PhSi)(2)SiMeK afforded second-generation dendrimer 3. All dendrimers were characterized by multinuclear NMR spectroscopy.  相似文献   

17.
Reaction of C70 with ten equivalents of silver(I) trifluoroacetate at 320-340 degrees C followed by fractional sublimation at 420-540 degrees C and HPLC processing led to the isolation of a single abundant isomer of C70(CF3)n for n = 2, 4, 6, and 10, and two abundant isomers of C70(CF3)8. These six compounds were characterized by using matrix-assisted laser desorption ionization (MALDI) mass spectrometry, 2D-COSY and/or 1D 19F NMR spectroscopy, and quantum-chemical calculations at the density functional theory (DFT) level. Some were also characterized by Raman spectroscopy. The addition patterns for the isolated compounds were unambiguously found to be C1-7,24-C70(CF3)2, C1-7,24,44,47-C70(CF3)4, C2-1,4,11,19,31,41-C70(CF3)6, Cs-1,4,11,19,31,41,51,64-C70(CF3)8, C2-1,4,11,19,31,41,51,60-C70(CF3)8, and C1-1,4,10,19,25,41,49,60,66,69-C70(CF3)10 (IUPAC numbering). Except for the last compound, which is identical to the recently reported, crystallographically characterized C70(CF3)10 derivative prepared by a different synthetic route, these compounds have not previously been shown to have the indicated addition patterns. The largest relative yield under an optimized set of reaction conditions was for the Cs isomer of C70(CF3)8 (ca. 30 mol % of the sublimed mixture of products based on HPLC integration). The results demonstrate that thermally stable C70(CF3)n isomers tend to have their CF3 groups arranged on isolated para-C6(CF3)2 hexagons and/or on a ribbon of edge-sharing meta- and/or para-C6(CF3)2 hexagons. For Cs- and C2-C70(CF3)8 and for C2-C70(CF3)6, the ribbons straddle the C70 equatorial belt; for C1-C70(CF3)4, the para-meta-para ribbon includes three polar hexagons; for C1-7,24-C70(CF3)2, the para-C6(CF3)2 hexagon includes one of the carbon atoms on a C70 polar pentagon. The 10.3-16.2 Hz 7JF,F NMR coupling constants for the end-of-ribbon CF3 groups, which are always para to their nearest-neighbor CF3 group, are consistent with through-space Fermi-contact interactions between the fluorine atoms of proximate, rapidly rotating CF3 groups.  相似文献   

18.
标题化合物C23H25对O3Cl是由邻氯苯甲醛与5,5-二甲基1,3-环己二酮在N,N-二甲基甲酸腹中反应而得。结构通过单晶X-射线衍射法确定,其晶体属于单科晶系,空间群=1632。晶体结构用直接法解出,使用全矩阵最小二乘法对原子参数进行修正,最后的偏离因子为R=0.054,Rw一0.063。在晶体结构中,吡喃环与苯环之间的两面角为92.43°。  相似文献   

19.
Tridentate dianionic arylsulfide free ligands [ArNHCH(2)C(6)H(4)NHC(6)H(4)-2-SPh] (Ar = Ph (3a); Ar = 2,4,6-trimethylphenyl (3b); Ar = 2,6-diisopropylphenyl (3c)) have been prepared by reduction of the corresponding imine compounds [ArN[double bond, length as m-dash]CHC(6)H(4)NHC(6)H(4)-2-SPh] (Ar = Ph (2a); Ar = 2,4,6-trimethylphenyl (2b); Ar = 2,6-diisopropylphenyl (2c)) with LiAlH(4) in high yields. Reactions of TiCl(4) with the tridentate dianionic arylsulfide free ligands (3a-3c) afford five-coordinate and four-coordinate titanium complexes [κS, κ(2)N-(ArNHCH(2)C(6)H(4)NHC(6)H(4)-2-SPh)TiCl(2)] (Ar = Ph (4a); Ar = 2,4,6-trimethylphenyl (4b)] and [κ(2)N-(ArNHCH(2)C(6)H(4)NHC(6)H(4)-2-SPh)TiCl(2)] (Ar = 2,6-diisopropylphenyl (4c)], respectively. The molecular structures of compounds 2b, 2c, 3b and 3c·HCl have been characterized by single crystal X-ray diffraction analyses. Complexes 2a-4c are characterized by IR,(1)H-NMR spectra, and elemental analysis. EXAFS spectroscopy performed on complexes 4b and 4c reveals the expected different coordination geometry due to steric hindrance effect. When activated by excess methylaluminoxane (MAO), 4a-4c can be used as catalysts for ethylene polymerization and exhibit moderate to good activities.  相似文献   

20.
Three isostructural disklike heptanuclear FeIII compounds of the general formula [FeIII7(mu3-O)3(L)3(mu-O2CCMe3)6(eta1-O2CCMe3)3(H2O)3], where L represents a di- or triethanolamine moiety, display a three-blade propeller topology, with the central Fe atom representing the axle or axis of the propeller. This motif corresponds to the theoretical model of a frustrated Heisenberg star, which is one of the very few solvable models in the area of frustrated quantum-spin systems and can, furthermore, be converted to an octanuclear cage for the case where L is triethanolamine to give [FeIII8(mu4O)3(mu4-tea)(teaH)3(O2CCMe3)6(N3)3].1/2MeCN.1/2H2O or [FeIII8(mu4O)3(mu4-tea)(teaH)3(O2CCMe3)6(SCN)3].2MeCN when treated with excess NaN3 or NH4SCN, respectively. The core structure is formally derived from that of the heptanuclear compounds by the replacement of the three aqua ligands by an {Fe(tea)} moiety, so that the 3-fold axis of the propeller is now defined by two central FeIII atoms. Magnetic studies on two of the heptanulcear compounds established unequivocally S = 5/2 spin ground state for these complexes, consistent with overall antiferromagnetic interactions between the constituent FeIII ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号