首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 205 毫秒
1.
将季铵型阴离子交换树脂(S210)直接硝化,并将其转型为碳酸氢根型应用于催化环氧乙烷(EO)水合反应。对树脂硝化前后的性能进行了考察,结果表明,硝化后树脂(N210)具有较好的热稳定性,在温度75℃、压力1.0MPa、空速1.0h-1、n(H2O):n(EO)=6条件下,催化剂连续运行980h,EO转化率由硝化前的89.8%提高到99.9%,乙二醇(EG)选择性由94.2%提高到95.6%,强碱交换容量损失率降低了51%。  相似文献   

2.
张万轩  叶康  刘丽琴  曹锰 《有机化学》2009,29(5):794-797
利用四丁基硫酸氢铵(TBAHS)和大孔树脂(D201型)支载的硫酸氢季铵盐(D201-HSO4), 分别催化环氧化合物或氮杂环丙烷与甲醇的开环反应, 以高产率得到β-甲氧基醇或β-甲氧基胺. 两种催化剂对该反应都很有效, 但大孔树脂支载的硫酸氢季铵盐(D201-HSO4)易于制备, 并可以重复使用.  相似文献   

3.
以大孔苯乙烯-二乙烯基苯共聚白球和1,3-噁嗪-2-酮为原料,烷基化、叔胺化和季铵化后得含有长碳链间隔臂的强碱阴离子交换树脂催化剂.用IR、EDS、HR/MAS表征了树脂的结构,测定了热稳定性和催化环氧乙烷水合的性能.OH-型树脂在100℃去离子水中720 h交换量下降率为11.8%.HCO3-型树脂在90℃、1.8 MPa、空速0.17 h-1,水与环氧乙烷比6.4的条件下,催化EO水合转化率98%,MEG选择性95%,200 h后交换量下降率小于2%.  相似文献   

4.
钯-高分子载体催化剂对糠醛加氢液相反应的研究   总被引:7,自引:0,他引:7  
以弱碱性苯乙烯系阴离子交换树脂[D392,-NH2,D382,-NHCH3,D301R,-NH(CH3)2],强碱性苯乙烯系阴离子交换树脂[201×7DVB,-NH+(CH3)3]和弱碱性环氧系阴离子交换树脂(701,-NH2)为载体制备了3种钯-高分子载体催化剂.考察了反应条件、高分子载体的种类、钯含量和催化剂用量对糠醛催化加氢生成四氢糠醇反应及催化性能的影响.在体积分数为50%的乙醇-水溶液和水中对糠醛常压液相加氢反应,钯-高分子载体(阴离子交换树脂D392,-NH2,D382,-NHCH3)催化剂均可使糠醛的加氢反应转化率达100%,生成四氢糠醇的选择性达98%以上,而用金属钯为催化剂的转化率达70%以上,选择性达97%以上.同时用XPS分析了高分子载体催化剂的结构与催化加氢反应性能的关系.  相似文献   

5.
合成了苯乙烯型强碱阴离子交换树脂,将其用于环氧乙烷催化水合制乙二醇反应中,研究了温度、浓度、空速对树脂催化性能的影响,探讨了树脂的不可逆膨胀及失活原因.结果表明,在393K树脂发生降解,降解物与环氧乙烷反应生成聚乙二醇胺,导致树脂膨胀破裂;在温度353K,压力1.5MPa,液时空速0.2h-1下,环氧乙烷转化率100%,乙二醇的选择性96.3%,使用1600h后,催化剂的膨胀率6%,强碱容量损失率7.5%.  相似文献   

6.
改性硅胶上的环氧乙烷水合反应   总被引:5,自引:0,他引:5  
王璠  陈金龙  张波  陈群  何明阳 《催化学报》2005,26(5):355-356
 先后采用氨丙基三乙氧基硅烷、甲醛-甲酸溶液和溴乙烷对大孔硅胶进行硅烷化、叔胺化和季铵化,制得改性硅胶,并考察了其对环氧乙烷水合制乙二醇的催化性能和催化剂的膨胀情况. 结果表明,在n(EO)/n(H2O)=1/22,95 ℃和1.0 MPa的条件下,环氧乙烷转化率为95.8%,乙二醇选择性为97.5%. 反应216 h后,催化剂几乎没有发生膨胀.  相似文献   

7.
以大孔强碱性离子交换树脂D201为载体, 利用FeCl3-HCl-NaCl溶液特有的性质制备出一种基于Donnan膜效应的新型树脂基水合氧化铁D201-HFO. 研究结果表明, D201-HFO对砷的吸附容量较美国同类专利产品ArsenX有较大提高, 同时该材料表现出对砷良好的吸附选择性和吸附动力学性能. 固定床吸附结果表明, 通过D201-HFO的吸附处理, 受污染水体中砷的含量可降至10 μg/L(我国生活饮用水新标准GB5749-2006)以下, 吸附后的D201- HFO可被NaOH-NaCl溶液彻底再生. 稳定性实验表明, HFO在D201树脂孔道内较为稳定, D201-HFO是一种性能优良、具有广泛应用前景的除砷吸附剂.  相似文献   

8.
微波协同强酸性大孔树脂催化合成肉桂酸正丙酯的研究   总被引:3,自引:1,他引:2  
研究了微波辐射强酸性大孔树脂催化合成肉桂酸正丙酯的合成工艺.通过优化合成工艺得到了最佳工艺条件,肉桂酸0.01mol,酸醇摩尔比1:5,催化剂为CAT 600树脂,催化剂用量为反应物质量的30%,微波功率400W,反应时间30min,产率达93.68%.催化剂可再生循环使用,催化性能稳定.  相似文献   

9.
采用具备酸碱双活性位的复合金属氧化物固体催化剂,催化乙酸乙酯(EA)、环氧乙烷(EO)的羧酸酯乙氧基化反应,合成乙酸乙二醇单乙醚酯(CAC)。探索了铝镁锆、铝锌锆等7种不同类型的三金属复合氧化物对EA乙氧基化反应的影响,并研究了EA乙氧基化反应中原料配比、反应温度、催化剂用量等对EO转化率、CAC产率的影响。实验结果表明,铝镁锆复合金属氧化物催化剂具有较高的催化活性,在EA∶EO原料摩尔比为4∶1、反应温度120℃、催化剂用量为1.5(wt)%时,EO转化率为88.3%,CAC产率为43.5%,乙酸二(三)乙二醇单乙醚酯(DCAC,TCAC)产率分别为26.7%和11.4%。  相似文献   

10.
采用具备酸碱双活性位的复合金属氧化物固体催化剂,催化乙酸乙酯(EA)、环氧乙烷(EO)的羧酸酯乙氧基化反应,合成乙酸乙二醇单乙醚酯(CAC)。探索了铝镁锆、铝锌锆等7种不同类型的三金属复合氧化物对EA乙氧基化反应的影响,并研究了EA乙氧基化反应中原料配比、反应温度、催化剂用量等对EO转化率、CAC产率的影响。实验结果表明,铝镁锆复合金属氧化物催化剂具有较高的催化活性,在EA∶EO原料摩尔比为4∶1、反应温度120℃、催化剂用量为1.5(wt)%时,EO转化率为88.3%,CAC产率为43.5%,乙酸二(三)乙二醇单乙醚酯(DCAC,TCAC)产率分别为26.7%和11.4%。  相似文献   

11.
The effect of added salts (NaCl, Na(2)SO(4), and NaSCN) or polyols (glycerin (Gly), 1,3-butanediol (1,3-BD), ethylene glycol (EG), and polyethylene glycol (PEG400)) on the hexagonal liquid-crystalline structure of polyoxyethylene-modified silicone was investigated by means of small angle X-ray scattering (SAXS). The effective cross-sectional area of the lipophilic part of the aggregate, a(s), in the hexagonal phase decreases upon the addition of salts, on one hand, lowering the cloud point in the dilute aqueous siloxane surfactant solutions. On the other hand, if added salt raises the cloud point, the a(s) increases. Similar results were obtained in the case of the addition of polyols. Since the a(s) mainly depends on the EO chain length, the above results are direct evidence that the hydration or dehydration of the EO chain is affected by these additives. The static fluorescence probe method was applied to the Gly and 1,3-BD systems using 8-anilino-1-naphthalene-sulfonic acid, ANS, to know the change in hydration of the EO chains. In the Gly system, the hydration of the EO chain monotonically decreases whereas 1,3-BD first increases the hydration and then decreases it at high 1,3-BD content. These results are very consistent with the SAXS and cloud temperature results. Copyright 2000 Academic Press.  相似文献   

12.
LiCl-induced changes in the micellar hydration and gelation characteristics of aqueous solutions of the two triblock copolymers F127 (EO(100)PO(70)EO(100)) and P123 (EO(20)PO(70)EO(20)) (where EO represents the ethylene oxide block and PO represents the propylene oxide block) have been studied by small-angle neutron scattering (SANS) and viscometry. The effect of LiCl was found to be significantly different from those observed for other alkali metal chloride salts such as NaCl and KCl. This can be explained on the basis of the complexation of hydrated Li(+) ions with the PEO chains in the micellar corona region. The interaction between the chains and the ions is more significant in the case F127 because of its larger PEO block size, and therefore, micelles of this copolymer show an enhanced degree of hydration in the presence of LiCl. The presence of the hydrated Li(+) ions in the micellar corona increases the amount of mechanically trapped water there and compensates more than the water molecules lost through the dehydration of the PEO chains in the presence of the Cl(-) ions. The enhancement in micellar hydration leads to a decrease in the minimum concentration required for the F127 solution to form a room-temperature cubic gel phase from 18% to 14%. Moreover, for both copolymers, the temperature range of stability of the cubic gel phase also increases with increasing LiCl concentration, presumably because of the ability of the Li(+) ions to reduce micellar dehydration with increasing temperature. Viscosity studies on a poly(ethylene glycol) (PEG) homopolymer with a size equivalent to that of the PEO block in F127 (4000 g/mol) also suggest that the dehydrating effect of the Cl(-) ion on the PEG chain is compensated by its interaction with the hydrated Li(+) ions.  相似文献   

13.
The mixed micellar system comprising the poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)-based triblock copolymer (EO)(20)(PO)(70)(EO)(20) (P123) and the anionic surfactant sodium dodecyl sulfate (SDS) has been investigated in aqueous media by small-angle neutron scattering (SANS) and viscosity measurements. The aggregation number of the copolymer in the micelles decreases upon addition of SDS, but a simultaneous enhancement in the degree of micellar hydration leads to a significant increase in the micellar volume fraction at a fixed copolymer concentration. This enhancement in the micellar hydration leads to a marked increase in the stability of the micellar gel phase until it is destroyed at very high SDS concentration. Mixed micellar systems with low and intermediate SDS concentrations form the micellar gel phase in much wider temperature and copolymer concentration ranges than the pure copolymer micellar solution. A comparison of the observed results with those for the copolymers (EO)(26)(PO)(40)(EO)(26) (P85) and (EO)(99)(PO)(70)(EO)(99) (F127) suggests that the composition of the copolymers plays a significant role in determining the influence of SDS on the gelation characteristics of the aqueous copolymer solutions. Copolymers with high PO/EO ratios show an enhancement in the stability of the gel phase, whereas copolymers with low PO/EO ratios show a deterioration of the same in the presence of SDS.  相似文献   

14.
Normal-phase separation of technical grade nonylphenol (t-NP, about 90% 4-nonylphenol), 4-nonylphenol mono-ethoxylate (4-NP1EO) and 4-nonylphenol di-ethoxylate (4-NP2EO) was assessed, with the inclusion of column temperature as an active variable. The compound 2,4,6-trimethylphenol was evaluated for use as internal standard. Isocratic elution with 2-propanol/hexanes mixtures from an amino-silica column and spectrometric UV detection at 277 nm were employed. Technical nonylphenol presented a significant contribution from unknown substances that eluted with retention times similar to that of 4-NP1EO. GC-MS analysis of the unknowns allowed to identify them as isomers of 2-NP. The response of the system to joint variations in flow rate, eluent composition and column temperature was investigated by means of Doehlert statistical experimental design. A model for retention of the analytes as a function of the experimental variables was proposed, and separation selectivity was studied. Selection of the optimal working zone was made through desirability function (D) calculations. Potential co-elution of 2-NP isomers with 4-NP1EO was considered when optimizing the separation. The occurrence of a restricted region of the experimental space where baseline resolution of analytes, associated impurities and internal standard results feasible (D not equal to 0) is apparent.  相似文献   

15.
Spontaneous emissions of S. dentata Aiton and S. scabra Thunb., as well as the essential oil (EO) composition of the cited species, together with S. aurea L., were investigated. The chemical profile of the first two species is reported here for the first time. Moreover, in vitro tests were performed to evaluate the antifungal activity of these EOs on Trichophyton mentagrophytes, Microsporum canis, Aspergillus flavus, Aspergillus niger, and Fusarium solani. Secondly, the EO antibacterial activity against Escherichia coli, Staphylococcus aureus, and Staphylococcus pseudointermedius was examined, and their antiviral efficacy against the H1N1 influenza virus was assessed. Leaf volatile organic compounds (VOCs), as well as the EOs obtained from the arial part of Salvia scabra, were characterized by a high percentage of sesquiterpene hydrocarbons (97.8% and 76.6%, respectively), mostly represented by an equal amount of germacrene D (32.8% and 32.7%, respectively). Both leaf and flower spontaneous emissions of S. dentata, as well as the EO composition, showed a prevalence of monoterpenes divided into a more or less equal amount of hydrocarbon and oxygenated compounds. Interestingly, its EO had a non-negligible percentage of oxygenated sesquiterpenes (29.5%). S. aurea EO, on the contrary, was rich in sesquiterpenes, both hydrocarbons and oxygenated compounds (41.5% and 33.5%, respectively). S. dentata EO showed good efficacy (Minimal Inhibitory Concentration (MIC): 0.5%) against M. canis. The tested EOs were not active against E. coli and S. aureus, whereas a low inhibition of S. dentata EO was observed on S. pseudointermedius (MIC = 10%). Once again, S. dentata EO showed a very good H1N1 inhibition; contrariwise, S. aurea EO was completely inactive against this virus. The low quantity of S. scabra EO made it impossible to test its biological activity. S. dentata EO exhibited interesting new perspectives for medicinal and industrial uses.  相似文献   

16.
In the present study a novel technique was proposed to prepare a polymer-supported hydrated ferric oxide (D201-HFO) based on Donnan membrane effect by using a strongly basic anion exchanger D201 as the host material and FeCl3-HCl-NaCl solution as the reaction environment. D201-HFO was found to exhibit higher capacity for arsenic removal than a commercial sorbent Purolite ArsenX. Furthermore, it presents favorable adsorption selectivity for arsenic removal from aqueous solution, as well as satis- factory kinetics. Fixed-bed column experiments showed that arsenic sorption on D201-HFO could re- sult in concentration of this toxic metalloid element below 10 μg/L, which was the new maximum con- centration limit set recently by the European Commission and imposed by the US EPA and China. Also, the spent D201-HFO is amenable to efficient regeneration by NaOH-NaCl solution.  相似文献   

17.
The hydration state of poly(ethylene oxide)s (PEOs) in aqueous solutions was investigated using dielectric relaxation measurements at 25 degrees C over a frequency range up to 20 GHz, which is the relaxation frequency of water molecules in a bulk state. The dielectric relaxation spectra obtained indicated decomposition into two major and one minor relaxation modes with relaxation times of 8.3, 22, and 250 ps, respectively. The two major modes were attributed to rotational relaxation of water molecules belonging to the bulk state and water molecules hydrogen bonded to ethylene oxide (EO) monomer units. The number of hydration water molecules per EO unit depended on the molar mass of PEO (M) and reached a constant value of 3.7 at M > 1500, which agrees with the value obtained by other experiments.  相似文献   

18.
The hydration behavior of the system polyoxyethylene (10) oleylalcohol [C18:1 (EO)10 or Brij 97]/water/dodecane/butanol (model system B) was investigated along a dilution line for which the respective weight ratio of dodecane:butanol:Brij 97 is 3:3:4. Two experimental methods were applied: time domain dielectric spectroscopy (TDDS) and sub-zero temperature differential scanning calorimetry (SZT-DSC). Two types of bound water (with melting peaks at -25 and -11°C) were detected by SZT-DSC (using the endothermic mode), whereas TDDS revealed only one such type. Nevertheless, roughly the same total amount of bound water was estimated from these two techniques. The average number of bound water molecules per ethylene oxide (EO) group, NW/EO is 2.3 (TDDS data) or 2.5 (SZT-DSC data) in good agreement with the observation that 1–2 water layers are formed in the hydration of ethoxylated surfactants. We have also shown that butanol is involved in the formation of the bound water that melts at -25°C. We suggest that butanol molecules occupy binding sites within the second hydration shell, thereby reducing the expected total bound water content.  相似文献   

19.
Artemisia jordanica (AJ) is one of the folkloric medicinal plants and grows in the arid condition used by Palestinian Bedouins in the Al-Naqab desert for the treatment of diabetes and gastrointestinal infections. The current investigation aimed, for the first time, to characterize the (AJ) essential oil (EO) components and evaluate EO’s antioxidant, anti-obesity, antidiabetic, antimicrobial, anti-inflammatory, and cytotoxic activities. The gas chromatography-mass spectrometer (GC-MS) technique was utilized to characterize the chemical ingredients of (AJ) EO, while validated biochemical approaches were utilized to evaluate the antioxidant, anti-obesity and antidiabetic. The microbicidal efficacy of (AJ) EO was measured utilizing the broth microdilution assay. Besides, the cytotoxic activity was estimated utilizing the (MTS) procedure. Finally, the anti-inflammatory activity was measured utilizing a COX inhibitory screening test kit. The analytical investigation revealed the presence of 19 molecules in the (AJ) EO. Oxygenated terpenoids, including bornyl acetate (63.40%) and endo-borneol (17.75%) presented as major components of the (AJ) EO. The EO exhibited potent antioxidant activity compared with Trolox, while it showed a weak anti-lipase effect compared with orlistat. In addition, the tested EO displayed a potent α-amylase suppressing effect compared with the positive control acarbose. Notably, the (AJ) EO exhibited strong α-glucosidase inhibitory potential compared with the positive control acarbose. The EO had has a cytotoxic effect against all the screened tumor cells. In fact, (AJ) EO showed potent antimicrobial properties. Besides, the EO inhibited the enzymes COX-1 and COX-2, compared with the anti-inflammatory drug ketoprofen. The (AJ) EO has strong antioxidant, antibacterial, antifungal, anti-α-amylase, anti-α-glucosidase, and COX inhibitory effects which could be a favorite candidate for the treatment of various neurodegenerative diseases caused by harmful free radicals, microbial resistance, diabetes, and inflammations. Further in-depth investigations are urgently crucial to explore the importance of such medicinal plants in pharmaceutical production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号