首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transparent Ni2+-doped MgO–Al2O3–SiO2 glass ceramics without and with Ga2O3 were synthetized. The precipitation of spinel nanocrystals, which was identified as solid solutions in the glass ceramics, could be favored by Ga2O3 addition and their sizes were about 7.6 nm in diameter. The luminescent intensity of the Ni2+-doped glass ceramics was largely enhanced by Ga2O3 addition which could mainly be caused by increasing of Ni2+ in the octahedral sites and the reduction of the mean frequency of phonon density of states in the spinel nanocrystals of solid solutions. The full width at half maximum (FWHM) of emissions for the glass ceramics with different Ga2O3 content was all more than 200 nm. The emission lifetime increased with the Ga2O3 content and the longest lifetime is about 250 μs. The Ni2+-doped transparent glass ceramics with Ga2O3 addition have potential application as broadband optical amplifier and laser materials.  相似文献   

2.
Polycrystalline (1−x)Ta2O5xTiO2 thin films were formed on Si by metalorganic decomposition (MOD) and annealed at various temperatures. As-deposited films were in the amorphous state and were completely transformed to crystalline after annealing above 600 °C. During crystallization, a thin interfacial SiO2 layer was formed at the (1−x)Ta2O5xTiO2/Si interface. Thin films with 0.92Ta2O5–0.08TiO2 composition exhibited superior insulating properties. The measured dielectric constant and dissipation factor at 1 MHz were 9 and 0.015, respectively, for films annealed at 900 °C. The interface trap density was 2.5×1011 cm−2 eV−1, and flatband voltage was −0.38 V. A charge storage density of 22.8 fC/μm2 was obtained at an applied electric field of 3 MV/cm. The leakage current density was lower than 4×10−9 A/cm2 up to an applied electric field of 6 MV/cm.  相似文献   

3.
The O3 absorption coefficients for the rotational lines P(12)–P(28) of the 9.4 μm emission band of the CO2 laser are presented. Measurements were made in O3–air dilute mixtures (20–600 ppm) at 25°C and a total pressure of 1013.25 h Pa using a frequency stabilized cw CO2 laser and values have been determined with greater precision than in previously reported studies.  相似文献   

4.
The results of the femtosecond time-resolved optical Kerr at 820 nm in GeS2–In2S3 chalcogenide glasses indicate that the response time in GeS2–In2S3 glasses is subpicosecond, which is predominantly due to the distortion of the electron cloud. The value of χ(3) in 0.95GeS2–0.05In2S3 glass is also as large as 2.7 × 10−13 esu, and it reduces with the addition of In2S3, which may be ascribed to the microstructure evolution of GeS2–In2S3 glasses. It is deduced that the intrinsic [Ge(In)S4] tetrahedral structure units that possess the high hyperpolarizability may do great contribution to the enhancement of third-order optical nonlinearity while [S3Ge–GeS3] ethane-like molecular units make no considerable contribution to that in femtosecond time scale. These GeS2–In2S3 and GeS2–In2S3-based chalcogenide glasses would be expected to be the promising materials for all-optical switching devices.  相似文献   

5.
In this study, we will develop the influences of the excess x wt% (x=0, 1, 2, and 3) Bi2O3-doped and the different fabricating process on the sintering and dielectric characteristics of 0.95 (Na0.5Bi0.5)TiO3–0.05 BaTiO3 ferroelectric ceramics with the aid of SEM and X-ray diffraction patterns, and dielectric–temperature curves. The 0.95 (Na0.5Bi0.5)TiO3–0.05 BaTiO3+x wt% Bi2O3 ceramics are fabricated by two different processes. The first process is that (Na0.5Bi0.5)TiO3 composition is calcined at 850 °C and BaTiO3 composition is calcined at 1100 °C, then the calcined (Na0.5Bi0.5)TiO3 and BaTiO3 powders are mixed in according to 0.95 (Na0.5Bi0.5)TiO3–0.05 BaTiO3+x wt% Bi2O3 compositions. The second process is that the raw materials are mixed in accordance to the 0.95 (Na0.5Bi0.5)TiO3–0.05 BaTiO3+x wt% Bi2O3 compositions and then calcining at 900 °C. The sintering process is carried out in air for 2 h from 1120 to 1240 °C. After sintering, the effects of process parameters on the dielectric characteristics will be developed by the dielectric–temperature curves. Dielectric–temperature properties are also investigated at the temperatures of 30–350 °C and at the frequencies of 10 kHz–1 MHz.  相似文献   

6.
The longitudinal ultrasonic attenuation measurements have been made using pulse echo method at fundamental frequencies of 2, 4, 6 and 8 MHz in 20WO3–(80−x) TeO2xPbO ternary tellurite glasses (x=10, 12.5, 15, 17.5 and 20 mol%) in the temperature range 160–280 K. The results showed the presence of a broad peak which shifts to higher temperature with increasing frequency. The ultrasonic attenuation peaks suggest that the experimental behavior is controlled by thermally activated structural relaxations. The internal friction, acoustic activation energy, deformation potential, relaxation strength, number of loss centers and density of state have been calculated both as a function of temperature and PbO content. The acoustic activation energy was found to decrease from 0.156 to 0.135 eV with the increase of PbO content. The results showed that both the number of loss centers and their activation energy decrease with the atomic ring size. An increase in the density of state is observed with addition of PbO content at the same frequency in the whole range of temperature which is associated with structural units formed when PbO is added.  相似文献   

7.
We show that BiB3O6 (BiBO) crystals, well known for their excellent second harmonic generation (SHG) properties, may also be of interest for third-order optical phenomena, particularly for two-photon absorption (TPA). Photoinduced TPA measurements were performed under illumination of excimer Xe–F laser (λ = 217 nm) as a photoinducing (pumping) beam. It created a thin surface layer (about 85 nm) that was a source of the observed photoinduced TPA. Raman shifted Nd-YAG laser radiation (λ = 1.9 μm) as well as its second and fourth harmonics (λ = 950 and λ = 475 nm, respectively) were used as fundamental (probing) beams of the TPA. The highest values of the TPA β coefficient were achieved for a polarization of the pumping light directed along crystallographic axis b. Quantum chemical simulations indicate on substantial contribution of UV-induced electron–phonon anharmonicity to the observed TPA. The obtained values of TPA coefficients indicate a possibility of using BiBO crystals as UV-operated optical limiters in a wide spectral range.  相似文献   

8.
In this paper, green and red up-conversion emissions of Er3+–Yb3+ co-doped TiO2 nanocrystals were reported. The phase structure, particle size and optical properties of Er3+–Yb3+ co-doped TiO2 nanocrystals samples were characterized by using X-ray diffraction (XRD), transmission electron microscopy (TEM), UV–vis–NIR absorption spectra and photoluminescence (PL) spectra. Green and red up-conversion emissions in the range of 520–570 nm (2H11/2, 4S3/24I15/2) and 640–690 nm (4F9/24I15/2) were observed for the Er3+–Yb3+ co-doped TiO2 nanocrystals. The visible up-conversion mechanism and temperature dependence of up-conversion emission for Er3+ in TiO2 nanocrystals were discussed in detail.  相似文献   

9.
Double-barrier highly asymmetric Nb–Al oxide–Al–Nb oxide–Nb structures with reproducible characteristics were fabricated. The heterocontacts with the middle Al layer thickness ranging from 4 to 6 nm exhibited a well-defined d.c. Josephson supercurrent Ic at 4.2 K and characteristic voltages Vc=IcRN (RN is the normal resistance, Vc defines the response time of the junction) from 0.3 to 0.4 mV. Two prominent features in the quasiparticle current–voltage curves have been observed: a so-called ‘knee' in the energy-gap region and an additional (to the linear voltage dependence) current at higher biases. They are discussed within a simple Landauer–Büttiker scattering approach to the phase-coherent quasiparticle transport in a quasiballistic S–I1–N–I2–S heterostructure with an extremely great difference between the barrier transparencies.  相似文献   

10.
Sol–gel derived Fe2O3 films containing about 10 wt% of Er2O3 were deposited on porous silicon by dipping or by a spin-on technique followed by thermal processing at 1073 K for 15 min. The samples were characterized by means of PL, SEM and X-ray diffraction analyses. They exhibit strong room-temperature luminescence at 1.5 μm related to erbium in the sol–gel derived host. The luminescence intensity increases by a factor of 1000 when the samples are cooled from 300 to 4.2 K. After complete removal of the erbium-doped film by etching and partial etching the porous silicon, the erbium-related luminescence disappears. Following this, luminescence at 1.5 μm originating from optically active dislocations (“D-lines”) in porous silicon was detected. The influence of the conditions of synthesis on luminescence at 1.5 μm is discussed.  相似文献   

11.
AISI 316L stainless steel was laser surface treated with different compositions of Si3N4 and Ti under various laser-processing parameters to improve its surface hardness through reinforcement of Ti-based silicides. The laser-treated regions exhibited improved surface hardness (250–1000 HV), variations in the surface morphology (smooth and bowl like) and presence of cracks and pores depending upon the Si3N4–Ti composition and laser-processing parameters. The study shows that when the Si3N4–Ti composition is 75–25 wt% and laser parameters are 1.5 kW laser power and 1.0 m min−1 scan speed, a laser-treated region with high hardness of about 800 HV and smooth surface morphology as well as free from pores and cracks is observed. The X-ray diffractometer (XRD) and Energy-Dispersive Spectroscopy (EDS) analyses show that the laser surface-treated region has reinforced phase of Ti5Si3 and retained austenitic structure. The reinforced phase gives rise to very high hardness (or wear resistance) and also a corrosion resistance.  相似文献   

12.
M. Sural  A. Ghosh   《Solid State Ionics》2000,130(3-4):259-266
The electric conductivity of ZnF2–AlF3–PbF2–LiF glasses has been studied in the frequency range 10 Hz–2 MHz and in the temperature range from 300 K to just below the glass transition temperature. The conductivity decreases with the increase in the LiF content in the composition, which results from the trapping of F ions by Li+ ions. Small values of the stretching exponent β are observed for the present glasses. The value of the decoupling index decreases with an increase in LiF content, consistent with the composition dependence of the conductivity.  相似文献   

13.
Pure and rare earth doped gadolinium oxide (Gd2O3) waveguide films were prepared by a simple sol–gel process and dip-coating method. Gd2O3 was successfully synthesized by hydrolysis of gadolinium acetate. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) were used to study the thermal chemistry properties of dried gel. Structure of Gd2O3 films annealed at different temperature ranging from 400 to 750 °C were investigated by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that Gd2O3 starts crystallizing at about 400 °C and the crystallite size increases with annealing temperature. Oriented growth of (4 0 0) face of Gd2O3 has been observed when the films were deposited on (1 0 0) Si substrate and annealed at 750 °C. The laser beam (λ=632.8 nm) was coupled into the film by a prism coupler and propagation loss of the film measured by scattering-detection method is about 2 dB/cm. Luminescence properties of europium ions doped films were measured and are discussed.  相似文献   

14.
In the present work, an optimized set of Gibbs energy functions is proposed for the Y–Zr–O ternary system. We focus on the ZrO2–YO1.5 quasi-binary system, but reoptimizations of the Zr–O and Y–O binary systems are included as well. The parameters for the Y–Zr binary system were taken from a previous assessment.

The ZrO2–YO1.5 system was treated as a quasi-binary section of the Y–Zr–O ternary system. The existing experimental data on the ZrO2–YO1.5 system were carefully reviewed. The related parameters were optimized using both thermodynamic data and phase diagram data. A calculated phase diagram of the ZrO2–YO1.5 system is presented. Our optimization agrees well with most experimental data. Two calculated isothermal sections of the Y–Zr–O system at 1500 and 2000 K are also included.  相似文献   


15.
A large positive magnetoresistance (MR) has been found in micro-sized Fex–C1−x composites. At a magnetic field of 5 T, the Fe0.2–C0.8 composite has the largest MR, 53.8% and 190% at room temperature and at 5 K, respectively. The magnetic field dependence of the MR can be described approximately as MR∝Bn, and the value of exponent n is determined by the Fe weight concentration and temperature, ranging from 1/4 to 6/4. It appears that Fex–C1−x has a linear field dependence of the positive MR at different temperatures. The possible mechanism for the positive MR is discussed.  相似文献   

16.
The intrinsic luminescence of glasses of the CaO–Ga2O3–GeO2 system has been investigated. High chemical purity and optical quality glasses, both undoped and doped with transition and rare-earth ions with different compositions, were obtained by high-temperature synthesis. The influences of the basic glass composition, impurities (Cr3+, Mn2+, Eu2+, Nd3+, Ho3+, Er3+, and Ce3+) and different kinds of excitation, on the intrinsic luminescence of the CaO–Ga2O3–GeO2 glasses were investigated. The nature and possible mechanisms of the intrinsic luminescence in glasses of this system are discussed. The proposed models of intrinsic luminescence are supported by electron spin resonance spectroscopy.  相似文献   

17.
We have measured the transmission and emission spectra of a new crystal, Nd : NaY(WO4)2 (Nd : NYW). Using a Ti : sapphire laser as the pump source, the laser performances of Nd : NYW crystals with different concentrations are compared for the first time. The Nd3+ concentrations used are 1, 2, 4 and 5 at%. Our investigation shows that 2 at% is the optimum concentration. When the incident pump power is 575 mW, the 1.06 μm output can reach 184 mW, corresponding to an optical-to-optical efficiency of 32%. We believe that our work is significant for the further research and actual application of this promising laser crystal.  相似文献   

18.
The structural and optical properties of β-FeSi2 precipitates produced by ion beam synthesis have been investigated by transmission electron microscopy, photoluminescence (PL) analysis and near infrared transmission measurements. The PL spectrum of β-FeSi2 precipitates in a dislocation free sample has been observed to consist of a sharp line at 1.54 μm and a weak peak at 1.46 μm. Optical transmission measurements showed a direct band gap about 0.8 eV smaller than in continuous β-FeSi2 film. Calculation of the electronic bands of β-FeSi2 for different values of the lattice parameters indicates that this reduction can be ascribed to band distortion provided by the lattice strain.  相似文献   

19.
The Co-sublattice anisotropy in Lu2Co17 consists of four competitive contributions from Co atoms at crystallographically different sites in the Th2Ni17-type of crystal structure, which result in the appearance of a spontaneous spin-reorientation transition (SRT) from the easy plane to the easy axis at elevated temperatures. In order to investigate this SRT in detail and to study the influence of Si substitution for Co on the magnetic anisotropy, magnetization measurements were performed on single crystals of Lu2Co17−xSix (x=0−3.4) grown by the Czochralski method. The SRT in Lu2Co17 was found to consist of two second-order spin reorientations, “easy-plane”–“easy-cone” at TSR1≈680 K and “easy-cone”–“easy-axis” at TSR2≈730 K. Upon Si substitution for Co, both SRTs shift toward the lower temperatures in Lu2Co16Si (TSR1≈75 K and TSR2≈130 K) with the further onset of the uniaxial type of magnetic anisotropy in the whole range of magnetic ordering for Lu2Co17−xSix compounds with x>1 due to a weakening of the easy-plane contribution from the Co atoms at the 6g and 12k sites to the total anisotropy.  相似文献   

20.
Nd2O3-doped 43Bi2O3xB2O3–(57−x)SiO2–1.0Nd2O3 (x=57, 47, 39, 28.5, 19.5, 10, 0 mol%) bismuth glasses were prepared by the conventional melt-quenching method, and the Nd3+: 4F3/24I13/2 fluorescence properties had been studied in an oxide system Bi2O3–B2O3–SiO2. The Judd–Ofelt analysis for Nd3+ ions in bismuth boron silicate glasses was also performed on the basis of absorption spectrum, and the transition probabilities, excited-state lifetimes, the fluorescence branching ratios, quantum efficiency and the stimulated emission cross-sections of 4F3/24I13/2 transition were calculated and discussed. The stimulated emission cross-sections of 1.3 μm were quite large due to a large refractive index of the host. Although the effective bandwidths decreased with increasing SiO2 content, quantum efficiencies and stimulated emission cross-sections enhanced largely with increasing SiO2 content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号