首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
壁面处气泡在静止流场和高速水流中溃灭过程的计算仿真   总被引:1,自引:0,他引:1  
罗经  李健  董光能 《摩擦学学报》2007,27(6):562-566
通过数值仿真计算,模拟近壁面以及附壁面气泡在静止流场和高速水流中的溃灭过程,研究气蚀作用机理.结果表明:气泡与壁面的距离和水流的速度影响其溃灭时间;附壁面气泡在高速水流中完全溃灭的时间最短,而在静止流场中最长,远离壁面将增加气泡的不稳定性;当气泡距离壁面一定距离溃灭时,射流不能直接作用于壁面,壁面承受冲击波的最大压力远小于气泡溃灭中心的压力;当气泡溃灭中心在壁面时,射流直接作用于壁面产生微小而严重的点破坏,而冲击波则使材料产生交变应力,造成环形破坏;当气泡在高速水流中溃灭时将产生逆流斜向射流,这可能是水力机械过流部件产生鱼鳞坑和波纹状破坏的主要原因.  相似文献   

2.
During the collapse of a bubble near a surface, a high-speed liquid jet often forms and subsequently impacts upon the opposite bubble surface. The jet impact transforms the originally singly-connected bubble to a toroidal bubble, and generates circulation in the flow around it. A toroidal bubble simulation is presented by introducing a vortex ring seeded inside the bubble torus to account for the circulation. The velocity potential is then decomposed into the potential of the vortex ring and a remnant potential. Because the remnant potential is continuous and satisfies the Laplace equation, it can be modelled by the boundary-integral method, and this circumvents an explicit domain cut and associated numerical treatment. The method is applied to study the collapse of gas bubbles in the vicinity of a rigid wall. Good agreement is found with the results of Best (J. Fluid Mech. 251 79–107, 1993), obtained by a domain cut method. Examination of the pressure impulse on the wall during jet impact indicates that the high-speed liquid jet has a significant potential for causing damage to a surface. There appears to be an optimal initial distance where the liquid jet is most damaging.  相似文献   

3.
The motion of bubbles in liquids has been studied in many earlier papers [1–8]. In this paper methods of the projection type are applied to the problem of a cavity in an ideal, incompressible liquid in the absence of vortices. The collapse of a bubble having a finite initial velocity in a boundless liquid is considered; also considered is the collapse of a stationary bubble close to a solid wall. Using the small-parameter method the generation of a jet is examined analytically. A numerical computing method not involving small parameters is developed; it is based on calculating the projection by numerical computation of the corresponding integrals. The method combines economy and simplicity of application with a high accuracy in the region in which the representation of the velocity potential by a series of spherical functions remains effective.  相似文献   

4.
The present work deals with the numerical investigation of a collapsing bubble in a liquid–gas fluid, which is modeled as a single compressible medium. The medium is characterized by the stiffened gas law using different material parameters for the two phases. For the discretization of the stiffened gas model, the approach of Saurel and Abgrall is employed where the flow equations, here the Euler equations, for the conserved quantities are approximated by a finite volume scheme, and an upwind discretization is used for the non‐conservative transport equations of the pressure law coefficients. The original first‐order discretization is extended to higher order applying second‐order ENO reconstruction to the primitive variables. The derivation of the non‐conservative upwind discretization for the phase indicator, here the gas fraction, is presented for arbitrary unstructured grids. The efficiency of the numerical scheme is significantly improved by employing local grid adaptation. For this purpose, multiscale‐based grid adaptation is used in combination with a multilevel time stepping strategy to avoid small time steps for coarse cells. The resulting numerical scheme is then applied to the numerical investigation of the 2‐D axisymmetric collapse of a gas bubble in a free flow field and near to a rigid wall. The numerical investigation predicts physical features such as bubble collapse, bubble splitting and the formation of a liquid jet that can be observed in experiments with laser‐induced cavitation bubbles. Opposite to the experiments, the computations reveal insight to the state inside the bubble clearly indicating that these features are caused by the acceleration of the gas due to shock wave focusing and reflection as well as wave interaction processes. While incompressible models have been used to provide useful predictions on the change of the bubble shape of a collapsing bubble near a solid boundary, we wish to study the effects of shock wave emissions into the ambient liquid on the bubble collapse, a phenomenon that may not be captured using an incompressible fluid model. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
A fundamental experimental investigation, with corresponding computational simulations, was conducted to understand the physical mechanisms of implosions of cylindrical shells occurring within a tubular confining space which has a limited potential energy reservoir. In particular, attention was focused on studying the generation of pressure waves from the implosion, the interaction of the pressure waves with the confining tube walls and end caps, and the collapse mechanisms of the implodable volume. Experiments were conducted with three implodable volume geometries which had similar critical collapse pressures. The implodable volumes were aluminum 6061-T6 cylindrical tubing and were placed concentrically within the confining tube. Pressure histories recorded along the length of the confining tube during the experiments were utilized to analytically evaluate the deformation of the implodable volume using fluid–structure coupled deformation models. Computational simulations were conducted using a coupled Eulerian–Lagrangian scheme to explicitly model the implosion process of the tubes along with the resulting compressible fluid flow. The numerical model developed in this study is shown to have high correlation with the experimental results and will serve as a predictive tool for the simulation of the implosion of different cylindrical geometries as well as various tube-in-tube implosion configurations. The experimental results show that the limited hydrostatic potential energy available in a confined environment, as compared to a free field, significantly influences the implosion process. The wall velocities of the implodable volume during the collapse, as well as the extent of the collapse progression, are largely affected by the sudden decrease in the available hydrostatic potential energy. This energy is shown to be partially transformed into elasto-plastic strain energy absorbed in the deformation of the implodable volume, as well as the kinetic energy of the water during the implosion process. Experiments also show that the extent of the collapse progression of an implodable volume can potentially be inhibited within a closed environment, which can lead to the arresting of an implosion event prior to completion for larger implodable volumes. The pressure waves generated during collapse comprise of waves emitted due to the impact of the implodable volume walls, the arrest of rushing water and contact propagation along the walls. These processes later evolve into water hammer type axial wave behavior.  相似文献   

6.
As is known, the collapse of vapor bubbles in a liquid can cause the intensive destruction of solid boundary surfaces. Experimental and theoretical investigations of bubble collapse have led to the conclusion that the surface of a bubble can deform and a liquid jet directed toward the solid surface can form in the process [1, 2]. In the theoretical reports [3, 4] too low jet velocities were obtained, inadequate to explain the destruction of the surface in a single impact. In [5] it was found as a result of numerical calculations that the formation of jets possessing enormous velocities is possible. It was also found that two fundamentally different schemes of jet formation are possible in the collapse of a bubble near a wall. The transition from one scheme to the other occurs upon a relatively small change in the initial shape of the bubble. In the present report we investigate the case of sufficiently small initial deformations of a bubble when the region occupied by the bubble remains simply connected during the formation of the jet; i.e., the separation of a small bubble from the bubble does not occur. In the case of the second scheme of bubble collapse near a wall the connectedness of the free boundary is disrupted and a small bubble separates off during the formation of the jet.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 94–99, May–June, 1979.  相似文献   

7.
The dynamics of a single rising bubble in the vicinity of a vertical wall is explored via three-dimensional numerical simulations. A finite volume method is used to solve the incompressible Navier–Stokes equations. The gas–liquid interface is reconstructed by volume-of-fraction (VOF) method. The trajectory, velocity, shape and vorticity of the bubble are analyzed in detail. The numerical results show that the presence of the wall imposes a repulsion on the bubble and that the bubble migrates away from the wall upon release. The onset of bubble path oscillation is found to occur earlier than for a freely rise counterpart and also at a lower Galilei number. Interestingly, we find that the vertical wall serves as a destabilizing factor in the wall-normal direction but a stabilizing factor in the spanwise direction. The increase of bubble inertia is discovered to enhance the influence of the wall. Furthermore, the bubble oscillations seem insensitive to the variation of the initial bubble-wall distance.  相似文献   

8.
This paper is primarily an assessment of laser-induced water jets for boring rock surfaces. It also reports the result of preliminary experiments of pulsed Ho:YAG laser-induced jets applied to drill a submerged rock specimen. The irradiation of pulsed Ho:YAG laser beams at 3 Hz inside a thin metal tube produces intermittent water vapor bubbles which result in liquid jet discharge from the exit of the metal tube. The laser-induced water jets are visualized by shadowgraphs and images are recorded by a high-speed digital video camera. High stagnation pressures were eventually generated by the jet impingements. Simultaneously shock waves of about 22.7 MPa were generated at bubble collapse, which effectively cracked the surface of the rock specimens. Repeated exposures of these laser-induced jets against submerged rock specimens have a potential to practically bore holes on rock surfaces.  相似文献   

9.
Simulation was performed of the behavior of a vapor bubble in a liquid under laser irradiation in laboratory experiments. A mathematical model was developed to analyze the effect of heat conduction, diffusion, and mass transfer on the bubble dynamics under compression and expansion. It is found that at the stage of collapse, intense condensation occurs on the bubble wall, which results in a significant (more than 15fold) decrease in bubble mass and an increase in pressure (to 105 atm) and temperature (to 104 K(. Results of numerical calculations of the radius of the first rebound and the amplitude of the divergent shock wave in water are compared with experimental data. It is shown that small (:about 1%) additives of an incondensable gas lead to a considerable decrease in mass transfer on the bubble wall.  相似文献   

10.
In this article, the flow instabilities during the rise of a single bubble in a narrow vertical tube are studied using a transient two-dimensional/axisymmetric model. To predict the shape of the bubble deformation, the Navier-Stokes equations in addition to an advection equation for liquid volume fraction are solved. A modified volume-of-fluid technique based on Youngs' algorithm is used to track the bubble deformation. To validate the model, the results of simulations for terminal rise velocity and bubble shape are compared with those of the experiments. The effect of different parameters such as initial bubble radius, channel height, liquid viscosity and surface tension on the shape and rise velocity of the bubble is investigated.  相似文献   

11.
两空泡运动特性研究   总被引:9,自引:0,他引:9  
本文应用边界方法研究了两个相邻空泡的运动特性,得到了空泡的演化规律,以及空泡溃灭时的射流速度与溃灭时间的变化趋势,对于两个空泡之间的距离和半径比的影响进行了讨论。计算结果表明:不同大小的空泡在一起时则小泡会先溃灭,且人泡的存在时间与两泡的半径比成正比;大泡对小泡来说其作用相当于-固壁面,小泡会形成-指向大泡的溃灭射流。相同大小的空泡在一起溃灭时,会同时形成指向中间的射 流,与单空泡在固壁面附近的溃  相似文献   

12.
This paper is concerned with the development of a high‐order numerical scheme for two‐phase viscoelastic flows. In the companion paper, herein referred to as Part 1, the scheme is applied to the modelling of two‐phase Newtonian flows. The particular problem of the collapse of a 2D bubble in the vicinity of a rigid boundary is considered. Attention is given to the construction of the most general form of the compressible Oldroyd B model that is consistent with the compressible Newtonian and upper‐convected Maxwell models in the appropriate limits. The governing equations are discretized using the spectral element method, and the two phases are modelled using a marker particle method. A comprehensive set of results is presented for the problem of bubble collapse near a rigid wall, and qualitative agreement is obtained with other numerical studies and experimental observations. Viscoelastic effects that are predicted include increased bubble oscillation with increasing Weissenberg number and considerable bubble deformation and cusping near the wall. Most importantly, it has been shown that viscoelasticity has the ability to prevent jet formation and therefore is likely to have a mitigating effect on cavitation damage. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
This paper is concerned with the development of a high‐order numerical scheme for the modelling of two‐phase Newtonian flows. The companion paper, herein referred to as Part 2, extends the scheme to two‐phase viscoelastic flows. The particular problem of the collapse of a two‐dimensional bubble in the vicinity of a rigid boundary is considered. The governing equations are discretized using the spectral element method, and the two phases are modelled using a marker particle method. The marker particle scheme is validated using the Zalesak slotted disk rotation test problem. A comprehensive set of results is presented for the problem of bubble collapse near a rigid wall, and qualitative agreement is obtained with other numerical studies and experimental observations. Viscous effects are shown to inhibit bubble collapse and prevent jet formation and are therefore likely to have a mitigating effect on cavitation damage.Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
This study utilizes a U-shape platform device to generate a single cavitation bubble for a detailed analysis of the flow field characteristics and the cause of the counter jet during the process of bubble collapse caused by sending a pressure wave. A high speed camera is used to record the flow field of the bubble collapse at different distances from a solid boundary. It is found that a Kelvin–Helmholtz vortex is formed when a liquid jet penetrates the bubble surface after the bubble is compressed and deformed. If the bubble center to the solid boundary is within one to three times the bubble’s radius, a stagnation ring will form on the boundary when impinged by the liquid jet. The fluid inside the stagnation ring will be squeezed toward the center of the ring to form a counter jet after the bubble collapses. At the critical position, where the bubble center from the solid boundary is about three times the bubble’s radius, the bubble collapse flow will vary. Depending on the strengths of the pressure waves applied, the collapse can produce a Kelvin–Helmholtz vortex, the Richtmyer–Meshkov instability, or the generation of a counter jet flow. If the bubble surface is in contact with the solid boundary, the liquid jet can only move inside-out without producing the stagnation ring and the counter jet; thus, the bubble collapses along the radial direction. The complex phenomenon of cavitation bubble collapse flows is clearly manifested in this study.  相似文献   

15.
The velocity field in the vicinity of a laser-generated cavitation bubble in water is investigated by means of particle tracking velocimetry (PTV). Two situations are explored: a bubble collapsing spherically and a bubble collapsing aspherically near a rigid wall. In the first case, the accuracy of the PTV method is assessed by comparing the experimental data with the flow field around the bubble as obtained from numerical simulations of the radial bubble dynamics. The numerical results are matched to the experimental radius–time curve extracted from high-speed photographs by tuning the model parameters. Trajectories of tracer particles are calculated and used to model the experimental process of the PTV measurement. For the second case of a bubble collapsing near a rigid wall, both the bubble shape and the velocity distribution in the fluid around the bubble are measured for different standoff parameters γ at several instants in time. The results for γ > 1 are compared with the corresponding results of a boundary-integral simulation. For both cases, good agreement between simulation and experiment is found.  相似文献   

16.
To study the impulsive pressure generated by cavitation bubble collapse, a PVDF piezoelectric array of pressure sensors is developed. The sensor array is fabricated directly on a 25 μm thick aluminum-metalized polarized PVDF film using a laser micro-machining technique. Dynamic calibration of the sensor array is accomplished in a gas shock tube. The average response time of the PVDF sensors to the fast-rising gas dynamic shock is found as fast as 31 ns. The array sensor is then attached on the solid boundary attacked by the collapse of the bubble. The features and the possible mechanisms of the impulsive pressure are discussed. The high sensitivity, low crosstalk, and low cost of the PVDF sensor array indicates its applicability in high amplitude impulsive field measurements.  相似文献   

17.
The transient buoyancy driven motion of two-dimensional bubbles across a domain bounded by two horizontal walls is studied by direct numerical simulations. The bubbles are initially released next to the lower wall and as they rise, they disperse. Eventually all the bubbles collect at the top wall. The goal of the study is to examine how a simple one-dimensional model for the averaged void fraction captures the unsteady bubble motion. By using void fraction dependent velocities, where the exact dependency is obtained from simulations of homogeneous bubbly flows, the overall dispersion of the bubbles is predicted. Significant differences remain, however. We suggest that bubble dispersion by the bubble induced liquid velocity must be included, and by using a simple model for the bubble dispersion we show improved agreement.  相似文献   

18.
The collapse of a nano-bubble near a solid wall is addressed here exploiting a phase field model recently used to describe the process in free space. Bubble collapse is triggered by a normal shock wave in the liquid. The dynamics is explored for different bubble wall normal distances and triggering shock intensities. Overall the dynamics is characterized by a sequence of collapses and rebounds of the pure vapor bubble accompanied by the emission of shock waves in the liquid. The shocks are reflected by the wall to impinge back on the re-expanding bubble. The presence of the wall and the impinging shock wave break the symmetry of the system, leading, for sufficiently strong intensity of the incoming shock wave, to the poration of the bubble and the formation of an annular structure and a liquid jet. Intense peaks of pressure and temperatures are found also at the wall, confirming that the strong localized loading combined with the jet impinging the wall is a potential source of substrate damage induced by the cavitation.  相似文献   

19.
The collapse stage of cavitation bubble development near a conical rigid boundary is investigated in detail by a finite-volume method and the volume of fluid method. The obtained results reveal the effect of the angle of the conical boundary on the bubble shape and the collapse time, as well as liquid jet formation. The degree of departure of the bubble shape from spherical one and the collapse time are found to increase with the increase of cone angle. The relationship between the prolongation factor of the collapse time near a conical boundary and the cone angle is proposed, and theoretical values of the collapse time are calculated. Good agreement is found between the theoretical values and the values obtained from simulations using a finite-volume method.  相似文献   

20.
The interaction of a bubble and a vortex ring at high Reynolds numbers could be considered a simplified model of the interaction of a bubble and a turbulent structure of similar size, with the possible subsequent bubble breakup. In this paper, some results from axisymmetric and 3D simulations of the interaction of a bubble and a vortex ring at high Reynolds numbers are presented for different values of the Weber number and vortex ring sizes. Some bubble breakup patterns that could not be obtained by previous axisymmetric boundary integral models are shown. Results obtained are discussed into the framework of the classical Kolgomorov–Hinze theory on bubble breakup and some recent experimental investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号