共查询到20条相似文献,搜索用时 15 毫秒
1.
Adil Fahsi Azzeddine Soulaïmani 《International Journal of Computational Fluid Dynamics》2017,31(3):135-155
This paper discusses the application of the extended finite element method (XFEM) to solve two-phase incompressible flows. The Navier–Stokes equations are discretised using the Taylor–Hood finite element. To capture the different discontinuities across the interface, kink or jump enrichments are used for the velocity and/or pressure fields. However, these enrichments may lead to an inappropriate combination of interpolations. Different polynomial enrichment orders and different enrichment functions are investigated; only the stable combination will be used afterward.In cases with a surface tension force, the accuracy mainly relies on the precise computation of the normal and curvature. A novel method for computing normal vectors to the interface is proposed. This method employs successive mesh refinements inside the cut elements. Comparisons with analytical and numerical solutions demonstrate that the method is effective. Moreover, the mesh refinement improves the sub-integration in the XFEM and allows for a precise re-initialisation procedure. 相似文献
2.
In this paper, we propose an improved tangent of hyperbola for interface capturing with slope weighting (THINC/SW) scheme for computing incompressible two-phase flows with surface tension on fixed Eulerian grids. The new scheme possesses the following major new properties in comparison with the original THINC/SW scheme: (i) providing a simple and accurate approach for generating a smooth level set (LS) field from the discontinuous volume-of-fluid field, (ii) determining the interface slope from the cogenerated LS field, and (iii) evaluating the surface tension force by the cogenerated LS field. We verified the proposed scheme with the widely used advection benchmark tests and multifluid simulations. Numerical results reveal that the new scheme can not only improve the solution quality of interface capturing but also increase the accuracy of curvature estimates and suppress the parasitic currents. 相似文献
3.
不可压缩Stokes流动的PSPG无网格法 总被引:2,自引:0,他引:2
将应用于有限元法的Pressure-Stabilizing/Petrov-Galerkin(PSPG)稳定化机制引入到无网格法中,有效消除了由于速度和压力的插值模式违反LBB条件而导致的压力场的虚假振荡。采用与有限元法耦合的连续掺混法(Continuous Blending Method)施加本质边界条件,使得边界条件不仅在边界节点上而且在整条边界上都得到严格满足。给出了两个典型算例的数值模拟结果,表明了所建议无网格法模拟不可压缩Stokes流动的有效性。 相似文献
4.
A consistent incompressible SPH method for internal flows with fixed and moving boundaries 下载免费PDF全文
An improved incompressible smoothed particle hydrodynamics (ISPH) method is presented, which employs first‐order consistent discretization schemes both for the first‐order and second‐order spatial derivatives. A recently introduced wall boundary condition is implemented in the context of ISPH method, which does not rely on using dummy particles and, as a result, can be applied more efficiently and with less computational complexity. To assess the accuracy and computational efficiency of this improved ISPH method, a number of two‐dimensional incompressible laminar internal flow benchmark problems are solved and the results are compared with available analytical solutions and numerical data. It is shown that using smaller smoothing lengths, the proposed method can provide desirable accuracies with relatively less computational cost for two‐dimensional problems. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
5.
An incompressible Navier–Stokes solver using curvilinear body‐fitted collocated grid has been developed to solve unconfined flow past arbitrary two‐dimensional body geometries. In this solver, the full Navier–Stokes equations have been solved numerically in the physical plane itself without using any transformation to the computational plane. For the proper coupling of pressure and velocity field on collocated grid, a new scheme, designated ‘consistent flux reconstruction’ (CFR) scheme, has been developed. In this scheme, the cell face centre velocities are obtained explicitly by solving the momentum equations at the centre of the cell faces. The velocities at the cell centres are also updated explicitly by solving the momentum equations at the cell centres. By resorting to such a fully explicit treatment considerable simplification has been achieved compared to earlier approaches. In the present investigation the solver has been applied to unconfined flow past a square cylinder at zero and non‐zero incidence at low and moderate Reynolds numbers and reasonably good agreement has been obtained with results available from literature. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
6.
Antonios M. Xenakis Steven J. Lind Peter K. Stansby Benedict D. Rogers 《国际流体数值方法杂志》2020,92(7):703-726
An incompressible smoothed particle hydrodynamics (ISPH) method is developed for the modeling of multiphase Newtonian and inelastic non-Newtonian flows at low density ratios. This new method is the multiphase extension of Xenakis et al, J. Non-Newtonian Fluid Mech., 218, 1-15, which has been shown to be stable and accurate, with a virtually noise-free pressure field for single-phase non-Newtonian flows. For the validation of the method a semi-analytical solution of a two-phase Newtonian/non-Newtonian (inelastic) Poiseuille flow is derived. The developed method is also compared with the benchmark multiphase case of the Rayleigh Taylor instability and a submarine landslide, thereby demonstrating capability in both Newtonian/Newtonian and Newtonian/non-Newtonian two-phase applications. Comparisons with analytical solutions, experimental and previously published results are conducted and show that the proposed methodology can accurately predict the free-surface and interface profiles of complex incompressible multi-phase flows at low-density ratios relevant, for example, to geophysical environmental applications. 相似文献
7.
A well‐recognized approach for handling the incompressibility constraint by operating directly on the discretized Navier–Stokes equations is used to obtain the decoupling of the pressure from the velocity field. By following the current developments by Guermond and Shen, the possibilities of obtaining accurate pressure and reducing boundary‐layer effect for the pressure are analysed. The present study mainly reports the numerical solutions of an unsteady Navier–Stokes problem based on the so‐called consistent splitting scheme (J. Comput. Phys. 2003; 192 :262–276). At the same time the Dirichlet boundary value conditions are considered. The accuracy of the method is carefully examined against the exact solution for an unsteady flow physics problem in a simply connected domain. The effectiveness is illustrated viz. several computations of 2D double lid‐driven cavity problems. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
8.
A new characteristic-based method for the solution of the 2D laminar incompressible Navier-Stokes equations is presented. For coupling the continuity and momentum equations, the artificial compressibility formulation is employed. The primitives variables (pressure and velocity components) are defined as functions of their values on the characteristics. The primitives variables on the characteristics are calculated by an upwind diffencing scheme based on the sign of the local eigenvalue of the Jacobian matrix of the convective fluxes. The upwind scheme uses interpolation formulae of third-order accuracy. The time discretization is obtained by the explicit Runge–Kutta method. Validation of the characteristic-based method is performed on two different cases: the flow in a simple cascade and the flow over a backwardfacing step. 相似文献
9.
This paper describes a finite element simulator for incompressible two-phase flow. This simulator is based on numerical techniques which are novel to the field of reservoir simulation. It uses irregular meshes, discontinuous high-order finite elements for the approximation of saturations (including Riemann solvers and slope limiters), and the mixed-hybrid formulation of mixed finite elements for an efficient and precise approximation of pressures and velocities. Each injection or production well is simulated by a few one-dimensional implicit models arranged to form a macroelement. This simulator is able to handle gravity, capillary pressures, porosity and permeability (both absolute and relative), and heterogeneity. Numerical results are shown which illustrate the capabilities of the code. 相似文献
10.
We report on the development and applications of an interface-capturing method aimed at computing three-dimensional incompressible two-phase flows involving high density and viscosity ratios, together with capillary effects. The numerical approach borrows some features to the Volume of Fluid method (since it is essentially based on the transport of the local volume fraction of the liquid) as well as to the Level Set technique (as no explicit reconstruction of the interface is carried out). The transport of the volume fraction is achieved by using a flux-limiting Zalesak scheme and the fronts are prevented from spreading in time by a specific strategy in which the velocity at nodes crossed by the interface is modified to keep the thickness of the transition region constant. As shown on several test cases, this algorithm allows the interface to deform properly while maintaining the numerical thickness of the transition region within three computational cells whatever the structure of the local flow field. The full set of governing equations is then used to investigate some fundamental aspects of bubble dynamics. More precisely we focus on the evolution of shape and rise velocity of a single bubble over a wide range of physical parameters and on head-on and side-by-side interactions between two rising bubbles. 相似文献
11.
This paper proposes a hybrid volume-of-fluid (VOF) level-set method for simulating incompressible two-phase flows. Motion of the free surface is represented by a VOF algorithm that uses high resolution differencing schemes to algebraically preserve both the sharpness of interface and the boundedness of volume fraction. The VOF method is specifically based on a simple order high resolution scheme lower than that of a comparable method, but still leading to a nearly equivalent order of accuracy. Retaining the mass conservation property, the hybrid algorithm couples the proposed VOF method with a level-set distancing algorithm in an implicit manner when the normal and the curvature of the interface need to be accurate for consideration of surface tension. For practical purposes, it is developed to be efficiently and easily extensible to three-dimensional applications with a minor implementation complexity. The accuracy and convergence properties of the method are verified through a wide range of tests: advection of rigid interfaces of different shapes, a three-dimensional air bubble's rising in viscous liquids, a two-dimensional dam-break, and a three-dimensional dam-break over an obstacle mounted on the bottom of a tank. The standard advection tests show that the volume advection algorithm is comparable in accuracy with geometric interface reconstruction algorithms of higher accuracy than other interface capturing-based methods found in the literature. The numerical results for the remainder of tests show a good agreement with other numerical solutions or available experimental data. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
12.
Andrea Dziubek 《Meccanica》2012,47(8):1819-1836
The main goal of these notes is to give a review of the equations for two phase flow problems with an interface between the two phases in a self-contained way, and, in particular, to properly include surface tension into the interface balance equations. 相似文献
13.
A finite element model is developed based on the penalty formulation to study incompressible laminar flows. The study includes a number of new quadrilateral and triangular elements for 2-dimensional flows and a number of new hexahedral and tetrahedral elements for 3-dimensional flows. All elements employ continuous velocity approximations and discontinuous pressure approximations respecting the LBB condition of numerical instability. An incremental Newton–Raphson method coupled with the Broyden method is used to solve the non-linear equations. Several numerical examples (colliding flow, cavity flow, etc.) are presented to assess the efficiency of elements. 相似文献
14.
15.
In gas-particle two-phase flows, when the concentration of the disperesed phase is low, certain assumptions may be made which simplify considerably the equations one has to solve. The gas and particle flows are then linked only via the interaction terms. One may therefore uncouple the full system of equations into two subsystems: one for the gas phase, whose homogeneous part reduces to the Euler equations; and a second system for the particle motion, whose homogeneous part is a degenerate hyperbolic system. The equations governing the gas phase flow may be solved using a high-resolution scheme, while the equations describing the motion of the dispersed phase are treated by a donor-cell method using the solution of a particular Riemann problem. Coupling is then achieved via the right-hand-side terms. To illustrate the capabilities of the proposed method, results are presented for a case specially chosen from among the most difficult to handle, since it involves certain geometrical difficulties, the treatment of regions in which particles are absent and the capturing of particle fronts. 相似文献
16.
T. P. Fries 《国际流体数值方法杂志》2009,60(4):437-471
In two‐fluid flows, jumps and/or kinks along the interfaces are present in the resulting velocity and pressure fields. Standard methods require mesh manipulations with the aim that either element edges align with the interfaces or that the mesh is sufficiently refined near the interfaces. In contrast, enriched methods, such as the extended finite element method (XFEM), enable the representation of arbitrary jumps and kinks inside elements. Thereby, optimal convergence can be achieved for two‐fluid flows with meshes that remain fixed throughout the simulation. In the intrinsic XFEM, in contrast to other enriched methods, no more unknowns are present in the approximation than in a standard finite element approximation. In this work, the intrinsic XFEM is employed for the simulation of incompressible two‐fluid flows. Numerical results are shown for a number of test cases and prove the success of the method. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
17.
2D thermal and isothermal time‐dependent incompressible viscous flows are presented in rectangular domains governed by the Boussinesq approximation and Navier–Stokes equations in the stream function–vorticity formulation. The results are obtained with a simple numerical scheme based on a fixed point iterative process applied to the non‐linear elliptic systems that result after a second‐order time discretization. The iterative process leads to the solution of uncoupled, well‐conditioned, symmetric linear elliptic problems. Thermal and isothermal examples are associated with the unregularized, driven cavity problem and correspond to several aspect ratios of the cavity. Some results are presented as validation examples and others, to the best of our knowledge, are reported for the first time. The parameters involved in the numerical experiments are the Reynolds number Re, the Grashof number Gr and the aspect ratio. All the results shown correspond to steady state flows obtained from the unsteady problem. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
18.
Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 28–34, November–December, 1990. 相似文献
19.
A particle–gridless hybrid method for the analysis of incompressible flows is presented. The numerical scheme consists of Lagrangian and Eulerian phases as in an arbitrary Lagrangian–Eulerian (ALE) method, where a new‐time physical property at an arbitrary position is determined by introducing an artificial velocity. For the Lagrangian calculation, the moving‐particle semi‐implicit (MPS) method is used. Diffusion and pressure gradient terms of the Navier–Stokes equation are calculated using the particle interaction models of the MPS method. As an incompressible condition, divergence of velocity is used while the particle number density is kept constant in the MPS method. For the Eulerian calculation, an accurate and stable convection scheme is developed. This convection scheme is based on a flow directional local grid so that it can be applied to multi‐dimensional convection problems easily. A two‐dimensional pure convection problem is calculated and a more accurate and stable solution is obtained compared with other schemes. The particle–gridless hybrid method is applied to the analysis of sloshing problems. The amplitude and period of sloshing are predicted accurately by the present method. The range of the occurrence of self‐induced sloshing predicted by the present method shows good agreement with the experimental data. Calculations have succeeded even for the higher injection velocity range, where the grid method fails to simulate. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
20.
A pseudo-spectral solver with multigrid acceleration for the numerical prediction of incompressible non-isothermal flows is presented. The spatial discretization is based on a Chebyshev collocation method on Gauss–Lobatto points and for the discretization in time the second-order backward differencing scheme (BDF2) is employed. The multigrid method is invoked at the level of algebraic system solving within a pressure-correction method. The approach combines the high accuracy of spectral methods with efficient solver properties of multigrid methods. The capabilities of the proposed scheme are illustrated by a buoyancy driven cavity flow as a standard benchmark case. To cite this article: K. Krastev, M. Schäfer, C. R. Mecanique 333 (2005). 相似文献