首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At least two circumstances point to the need of postprocessing techniques to recover lost time information from non-time-resolved data: the increasing interest in identifying and tracking coherent structures in flows of industrial interest and the high data throughput of global measuring techniques, such as PIV, for the validation of computational fluid dynamics (CFD) codes. This paper offers the mathematic fundamentals of a space--time reconstruction technique from non-time-resolved, statistically independent data. An algorithm has been developed to identify and track traveling coherent structures in periodic flows. Phase-averaged flow fields are reconstructed with a correlation-based method, which uses information from the Proper Orthogonal Decomposition (POD). The theoretical background shows that the snapshot POD coefficients can be used to recover flow phase information. Once this information is recovered, the real snapshots are used to reconstruct the flow history and characteristics, avoiding neither the use of POD modes nor any associated artifact. The proposed time reconstruction algorithm is in agreement with the experimental evidence given by the practical implementation proposed in the second part of this work (Legrand et al. in Exp Fluids, 2011), using the coefficients corresponding to the first three POD modes. It also agrees with the results on similar issues by other authors (Ben Chiekh et al. in 9 Congrès Francophone de Vélocimétrie Laser, Bruxelles, Belgium, 2004; Van Oudheusden et al. in Exp Fluids 39-1:86?C98, 2005; Meyer et al. in 7th International Symposium on Particle Image Velocimetry, Rome, Italy, 2007a; in J Fluid Mech 583:199?C227, 2007b; Perrin et al. in Exp Fluids 43-2:341?C355, 2007). Computer time to perform the reconstruction is relatively short, of the order of minutes with current PC technology.  相似文献   

2.
The Lattice Boltzmann Method (LBM) has proved to be a promising approach to solve the Navier–Stokes equations, especially for incompressible and isothermal cases. For turbulent flows, the quality of the predictions has been previously studied considering standard spectral forced (ten Cate et al., Comput Fluids 35:1239–1251, 2006) statistically homogeneous isotropic turbulence. In the present contribution, a recently proposed linear forcing scheme working in physical space (Lundgren 2003; Rosales and Meneveau, Phys Fluids 17(9):095106–1,8, 2005) has been integrated in a three-dimensional fifteen-velocity LBM formulation. Results have been analyzed, with special attention to the dynamics of the flow through the invariants of the velocity tensor. This topic had not been studied yet for the linear forcing, regardless of the nature (spectral or LBM) of the numerical method. Results fully agree with standard pseudo-spectral direct numerical simulations, results proving the validity of the LBM with linear forcing in real space to study this kind of turbulent flows.  相似文献   

3.
A cylindrical cavity with an aspect ratio of unity is filled with liquid metal and suddenly exposed to an azimuthal body force generated by a rotating magnetic field (RMF). This experimental study is concerned with the secondary meridional flow during the time, if the fluid spins up from rest. Vertical profiles of the axial velocity have been measured by means of the ultrasound Doppler velocimetry. The flow measurements confirm the spin-up concept by Ungarish (J Fluid Mech 347:105–118, 1997) and the continuative study by Nikrityuk et al. (Phys Fluids 17:067101, 2005) who suggested the existence of two stages during the RMF-driven spin-up, in particular the so-called initial adjustment phase followed by an inertial phase which is dominated by inertial oscillations of the secondary flow. Evolving instabilities of the double-vortex structure of the secondary flow have been detected at a Taylor number of 1.24 × 105 verifying the predictions of Grants and Gerbeth (J Fluid Mech 463:229–240, 2002). Perturbations in form of Taylor–Görtler vortices have been observed just above the instability threshold.  相似文献   

4.
We present a range of numerical tests comparing the dynamical cores of the operationally used numerical weather prediction (NWP) model COSMO and the university code Dune, focusing on their efficiency and accuracy for solving benchmark test cases for NWP. The dynamical core of COSMO is based on a finite difference method whereas the Dune core is based on a Discontinuous Galerkin method. Both dynamical cores are briefly introduced stating possible advantages and pitfalls of the different approaches. Their efficiency and effectiveness is investigated, based on three numerical test cases, which require solving the compressible viscous and non-viscous Euler equations. The test cases include the density current (Straka et al. in Int J Numer Methods Fluids 17:1–22, 1993), the inertia gravity (Skamarock and Klemp in Mon Weather Rev 122:2623–2630, 1994), and the linear hydrostatic mountain waves of (Bonaventura in J Comput Phys 158:186–213, 2000).  相似文献   

5.
The work presented in this paper details the implementation of a new technique for the measurement of local burning velocity using asynchronous particle image velocimetry. This technique uses the local flow velocity ahead of the flame front to measure the movement of the flame by the surrounding fluid. This information is then used to quantify the local burning velocity by taking into account the translation of the flame via convection. In this paper the developed technique is used to study the interaction between a flame front and a single toroidal vortex for the case of premixed stoichiometric methane and air combustion. This data is then used to assess the impact of vortex structure on flame propagation rates. The burning velocity data demonstrates that there is a significant enhancement to the rate of flame propagation where the flame directly interacts with the rotating vortex. The increases found were significantly higher than expected but are supported by burning velocities (Filatyev et al, Combust Flame 141:1?C21, 2005; Kobayashi et al, Proc Combust Inst 29:1793?C1800, 2002; Shepherd et al. 1998) found in turbulent flames of the same mixture composition. Away from this interaction with the main vortex core, the flame exhibits propagation rates around the value recorded in literature for unperturbed laminar combustion (Tahtouh et al, Combust Flame 159:1735?C1743, 2009; Hassan et al, Combust Flame 115:539?C550, 1998); Halter et al, Proc Combust Inst 30:201?C208, 2005; Coppens et al, Exp Therm Fluid Sci 31:437?C444, 2007).  相似文献   

6.
7.
The purpose of this work is the comparison of some aspects of the formulation of material models in the context of continuum thermodynamics (e.g., ?ilhavý in The mechanics and thermodynamics of continuous media, Springer, Berlin, 1997) with their formulation in the form of a General Equation for Non-Equilibrium Reversible-Irreversible Coupling (GENERIC: e.g., Grmela and Öttinger in Phys. Rev. E 56: 6620–6632, 1997; Öttinger and Grmela in Phys. Rev. E 56: 6633–6655, 1997; Öttinger in Beyond equilibrium thermodynamics, Wiley, New York, 2005; Grmela in J. Non-Newton. Fluid Mech. 165: 980–998, 2010). A GENERIC represents a generalization of the Ginzburg-Landau model for the approach of non-equilibrium systems to thermodynamic equilibrium. Originally developed to formulate non-equilibrium thermodynamic models for complex fluids, it has recently been applied to anisotropic inelastic solids in a Eulerian setting (Hütter and Tervoort in J. Non-Newton. Fluid Mech. 152: 45–52, 2008; 53–65, 2008; Adv. Appl. Mech. 42: 254–317, 2009) as well as to damage mechanics (Hütter and Tervoort in Acta Mech. 201: 297–312, 2008). In the current work, attention is focused for simplicity on the case of thermoelastic solids with heat conduction and viscosity in a Lagrangian setting (e.g., ?ilhavý in The mechanics and thermodynamics of continuous media, Springer, Berlin, 1997, Chaps. 9–12). In the process, the relation of the two formulations to each other is investigated in detail. A particular point in this regard is the concept of dissipation and its model representation in both contexts.  相似文献   

8.
The lattice Boltzmann method (LBM) was used to conduct a direct numerical simulation study of the airflow inside an idealised human upper airway. Results from both a modest resolution (18 million control volumes, 320 Gb data set) and an extreme resolution (148 million control volumes, 800 Gb data set) LBM simulation were compared to those from experimental results (Johnstone, A.: Hot wire measurements in an oropharyngeal pathway. M.Sc. Thesis, Queen’s University, Kingston, ON, Canada, 2002; Johnstone et al., Expt Fluids 37(5): 673–689, 2004). A coarse resolution simulation (2.4 million control volumes, 105 Gb data set) was used to record the entire time-varying flow field; the nature of the mean structures in the three-dimensional flow field was studied using this data set. For the mean statistics, the LBM calculations yield better results than do the Reynolds averaged Navier–Stokes methods (Ball et al., Comput Fluids, 2007); the LBM reproduces significant detail of experimentally observed flow features. The flow is three-dimensional, obviously, and the interrogation of the mean flow structure is found to be unsteady so that sagittal plane and time-integrated measurements alone are insufficient to verify the accuracy of computational predictions of this flow.  相似文献   

9.
T. Si  Z. Zhai  X. Luo  J. Yang 《Shock Waves》2014,24(1):3-9
The Richtmyer–Meshkov instability behavior of a heavy-gas $(\text{ SF }_6)$ cylinder accelerated by a cylindrical converging shock wave is studied experimentally. A curved wall profile is well-designed based on the shock dynamics theory [Phys. Fluids, 22: 041701 (2010)] with an incident planar shock Mach number of 1.2 and a converging angle of $15^\circ $ in a $95\,\text{ mm }\times 95$ mm square cross-section shock tube. The $\text{ SF }_6$ cylinder mixed with the glycol droplets flows vertically through the test section and is illuminated horizontally by a laser sheet. The images obtained only one per run by an ICCD (intensified charge coupled device) combined with a pulsed Nd:YAG laser are first presented and the complete evolution process of the $\text{ SF }_6$ cylinder is then captured in a single test shot by a high-speed video camera combined with a high-power continuous laser. In this way, both the developments of the first counter-rotating vortex pair and the second counter-rotating vortex pair with an opposite rotating direction from the first one are observed. The experimental results indicate that the phenomena induced by the converging shock wave and the reflected shock formed from the center of convergence are distinct from those found in the planar shock case.  相似文献   

10.
In a recent work in the static case, Gratie (Appl. Anal. 81:1107–1126, 2002) has generalized the classical Marguerre-von Kármán equations studied by Ciarlet and Paumier in (Comput. Mech. 1:177–202, 1986), where only a portion of the lateral face of the shallow shell is subjected to boundary conditions of von Kármán type, while the remaining portion is subjected to boundary conditions of free edge. Then Ciarlet and Gratie (Math. Mech. Solids 11:83–100, 2006) have established an existence theorem for these equations. In Chacha et al. (Rev. ARIMA 13:63–76, 2010), we extended formally these studies to the dynamical case. More precisely, we considered a three-dimensional dynamical model for a nonlinearly elastic shallow shell with a specific class of boundary conditions of generalized Marguerre-von Kármán type. Using technics from formal asymptotic analysis, we showed that the scaled three-dimensional solution still leads to two-dimensional dynamical boundary value problem called the dynamical equations of generalized Marguerre-von Kármán shallow shells. In this paper, we establish the existence of solutions to these equations using a compactness method of Lions (Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Paris, 1969).  相似文献   

11.
A major issue for the simulation of two-phase flows in engines concerns the modeling of the liquid disperse phase, either in the Lagrangian or the Eulerian approach. In the perspective of massively parallel computing, the Eulerian approach seems to be more suitable, as it uses the same algorithms as the gaseous phase solver. However taking into account the whole physics of a turbulent spray, especially in terms of polydispersity, requires an additional modeling effort. The Mesoscopic Eulerian Formalism (MEF) [13] accounts for the effect of turbulence on the disperse phase, and was extended to the Large Eddy Simulation framework [41], but is limited to monodisperse flows. In [38], the influence of polydispersity on resolved and unresolved turbulent motions of the disperse phase was highlighted, and a first model was proposed, based on size-conditioned statistics. Starting from this idea, a coupling between the MEF and the Multifluid Approach (MA) [30] is proposed. The MA decomposes the Eulerian phase into several fluid classes called sections, and corresponding to size intervals. Each section uses then size-conditioned closures. The original idea of this work is to use the MEF closures independently in each section, taking into account the mean droplet size of this section. This new approach, called Multifluid Mesoscopic Eulerian Formalism (MMEF), is then able to capture polydispersion with associated size-conditioned turbulent dynamics. First, the importance of polydispersity and the ability of MMEF to capture it are highlighted with a 0D evaporation case and a 2D vortex case, showing its impact on dynamics in both size and physical spaces. Then, the MMEF is applied to the MERCATO configuration of ONERA [18]. Results are compared to monodisperse Eulerian, Lagrangian and experimental results.  相似文献   

12.
Within the context of heteroepitaxial growth of a film onto a substrate, terraces and steps self-organize according to misfit elasticity forces. Discrete models of this behavior were developed by Duport et al. (J Phys I 5:1317–1350, 1995) and Tersoff et al. (Phys Rev Lett 75:2730–2733, 1995). A continuum limit of these was in turn derived by Xiang (SIAM J Appl Math 63:241–258, 2002) (see also the work of Xiang and Weinan Phys Rev B 69:035409-1–035409-16, 2004; Xu and Xiang SIAM J Appl Math 69:1393–1414, 2009). In this paper we formulate a notion of weak solution to Xiang’s continuum model in terms of a variational inequality that is satisfied by strong solutions. Then we prove the existence of a weak solution.  相似文献   

13.
14.
An essential part in modeling out-of-equilibrium dynamics is the formulation of irreversible dynamics. In the latter, the major task consists in specifying the relations between thermodynamic forces and fluxes. In the literature, mainly two distinct approaches are used for the specification of force–flux relations. On the one hand, quasi-linear relations are employed, which are based on the physics of transport processes and fluctuation–dissipation theorems (de Groot and Mazur in Non-equilibrium thermodynamics, North Holland, Amsterdam, 1962, Lifshitz and Pitaevskii in Physical kinetics. Volume 10, Landau and Lifshitz series on theoretical physics, Pergamon Press, Oxford, 1981). On the other hand, force–flux relations are also often represented in potential form with the help of a dissipation potential (?ilhavý in The mechanics and thermodynamics of continuous media, Springer, Berlin, 1997). We address the question of how these two approaches are related. The main result of this presentation states that the class of models formulated by quasi-linear relations is larger than what can be described in a potential-based formulation. While the relation between the two methods is shown in general terms, it is demonstrated also with the help of three examples. The finding that quasi-linear force–flux relations are more general than dissipation-based ones also has ramifications for the general equation for non-equilibrium reversible–irreversible coupling (GENERIC: e.g., Grmela and Öttinger in Phys Rev E 56:6620–6632, 6633–6655, 1997, Öttinger in Beyond equilibrium thermodynamics, Wiley Interscience Publishers, Hoboken, 2005). This framework has been formulated and used in two different forms, namely a quasi-linear (Öttinger and Grmela in Phys Rev E 56:6633–6655, 1997, Öttinger in Beyond equilibrium thermodynamics, Wiley Interscience Publishers, Hoboken, 2005) and a dissipation potential–based (Grmela in Adv Chem Eng 39:75–129, 2010, Grmela in J Non-Newton Fluid Mech 165:980–986, 2010, Mielke in Continuum Mech Therm 23:233–256, 2011) form, respectively, relating the irreversible evolution to the entropy gradient. It is found that also in the case of GENERIC, the quasi-linear representation encompasses a wider class of phenomena as compared to the dissipation-based formulation. Furthermore, it is found that a potential exists for the irreversible part of the GENERIC if and only if one does for the underlying force–flux relations.  相似文献   

15.
We consider systems of differential equations which model complex regulatory networks by a graph structure of dependencies. We show that the concepts of informative nodes (Mochizuki and Saito, J Theor Biol 266:323–335, 2010) and determining nodes (Foias and Temam, Math Comput 43:117–133, 1984) coincide with the notion of feedback vertex sets from graph theory. As a result we can determine the long-time dynamics of the entire network from observations on only a feedback vertex set. We also indicate how open loop control at a feedback vertex set, only, forces the remaining network to stably follow prescribed stable or unstable trajectories. We present three examples of biological networks which motivated this work: a specific gene regulatory network of ascidian cell differentiation (Imai et al., Science 312:1183–1187, 2006), a signal transduction network involving the epidermal growth factor in mammalian cells (Oda et al., Mol Syst Biol 1:1–17, 2005), and a mammalian gene regulatory network of circadian rhythms (Mirsky et al., Proc Natl Acad Sci USA 106:11107–11112, 2009). In each example the required observation set is much smaller than the entire network. For further details on biological aspects see the companion paper (Mochizuki et al., J Theor Biol, 2013, in press). The mathematical scope of our approach is not limited to biology. Therefore we also include many further examples to illustrate and discuss the broader mathematical aspects.  相似文献   

16.
Based on two large-eddy simulations (LES) of a non-reacting turbulent round jet with a nozzle based Reynolds number of 8,610 with the same configuration as the one that has recently been investigated experimentally (Gampert et al., 2012; J Fluid Mech, 2012; J Fluid Mech 724:337, 2013), we examine the scalar turbulent/non-turbulent (T/NT) interface layer in the mixture fraction field of the jet flow between ten and thirty nozzle diameters downstream. To this end, the LES—one with a coarse grid and one with a fine grid—are in a first step validated against the experimental data using the axial decay of the mean velocity and the mean mixture fraction as well as based on radial self-similar profiles of mean and root mean square values of these two quantities. Then, probability density functions (pdf) of the mixture fraction at various axial and radial positions are compared and the quality of the LES is discussed. In general, the LES results are consistent with the experimental data. However, in the flow region where the imprint of the T/NT interface layer is dominant in the mixture fraction pdf, discrepancies are observed. In a next step, statistics of the T/NT interface layer are studied, where a satisfactory agreement for the pdf of the location of the interface layer from the higher resolved LES with the experimental data is observed, while the one with the coarse grid exhibits considerable deviations. Finally, the mixture fraction profile across the interface is investigated where the same trend as for the pdf of the location is present. In particular, it is found that the sharp interface that is present in experimental studies (Gampert et al., J Fluid Mech, 2013; Westerweel et al., J Fluid Mech 631:199, 2009) is less distinct in the LES results and rather diffused in radial direction outside of the T/NT interface layer.  相似文献   

17.
The aim of this study is to investigate experimentally the effect of surface roughness on cloud cavitation around Clark-Y hydrofoils. High-speed video and particle image velocimetry(PIV) were used to obtain cavitation patterns images(Prog. Aerosp. Sci. 37: 551–581, 2001), as well as velocity and vorticity fields. Results are presented for cloud cavitating conditions around a Clark-Y hydrofoil fixed at angle of attack of α = 8?for moderate Reynolds number of Re = 5.6 × 10~5. The results show that roughness had a great influence on the pattern, velocity and vorticity distribution of cloud cavitation. For cavitating flow around a smooth hydrofoil(A) and a rough hydrofoil(B), cloud cavitation occurred in the form of finger-like cavities and attached subulate cavities, respectively. The period of cloud cavitation around hydrofoil A was shorter than for hydrofoil B.Surface roughness had a great influence on the process of cloud cavitation. The development of cloud cavitation around hydrofoil A consisted of two stages:(1) Attached cavities developed along the surface to the trailing edge;(2) A reentrant jet developed, resulting in shedding and collapse of cluster bubbles or vortex structure. Meanwhile, its development for hydrofoil B included three stages:(1) Attached cavities developed along the surface to the trailing edge, with accumulation and rotation of bubbles at the trailing edge of the hydrofoil affecting the flow field;(2) Development of a reentrant jet resulted in the first shedding of cavities. Interaction and movement of flows from the pressure side and suction side brought liquid water from the pressure side to the suction side of the hydrofoil, finally forming a reentrant jet. The jet kept moving along the surface to the leading edge of the hydrofoil, resulting in large-scale shedding of cloud bubbles. Several vortices appeared and dissipated during the process;(3) Cavities grew and shed again.  相似文献   

18.
We study the motion of isentropic gas in a nozzle. Nozzles are used to increase the thrust of engines or to accelerate a flow from subsonic to supersonic. Nozzles are essential parts for jet engines, rocket engines and supersonicwind tunnels. In the present paper, we consider unsteady flow, which is governed by the compressible Euler equation, and prove the existence of global solutions for the Cauchy problem. For this problem, the existence theorem has already been obtained for initial data away from the sonic state, (Liu in Commun Math Phys 68:141–172, 1979). Here, we are interested in the transonic flow, which is essential for engineering and physics. Although the transonic flow has recently been studied (Tsuge in J Math Kyoto Univ 46:457–524, 2006; Lu in Nonlinear Anal Real World Appl 12:2802–2810, 2011), these papers assume monotonicity of the cross section area. Here, we consider the transonic flow in a nozzle with a general cross section area. When we prove global existence, the most difficult point is obtaining a bounded estimate for approximate solutions. To overcome this, we employ a new invariant region that depends on the space variable. Moreover, we introduce a modified Godunov scheme. The corresponding approximate solutions consist of piecewise steady-state solutions of an auxiliary equation, which yield a desired bounded estimate. In order to prove their convergence, we use the compensated compactness framework.  相似文献   

19.
We study the existence of traveling wave solutions for a diffusive predator?Cprey system. The system considered in this paper is governed by a Sigmoidal response function which in some applications is more realistic than the Holling type I, II responses, and more general than a simplified form of the Holling type III response considered before. Our method is an improvement to the original method introduced in the work of Dunbar (J Math Biol 17:11?C32, 1983; SIAM J Appl Math 46:1057?C1078, 1986). A bounded Wazewski set is used in this work while unbounded Wazewski sets were used in Dunbar (1983, 1986). The existence of traveling wave solutions connecting two equilibria is established by using the original Wazewski??s theorem which is much simpler than the extended version in Dunbar??s work.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号