首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
半导体异质结在探索新奇物理和发展器件应用等方面一直发挥着不可替代的作用.得益于其特有的能带性质,相对较窄的带隙和足够大的自旋轨道耦合相互作用,Ⅳ-Ⅵ族化合物半导体异质结不仅在红外器件应用方面具有重要的研究价值,而且在拓扑绝缘体和自旋电子学等前沿领域引起了广泛的关注.尤为重要的是,在以CdTe/PbTe为代表的Ⅳ-Ⅵ族化合物半导体异质结界面上发现了高浓度、高迁移率的二维电子气.该电子气的形成归因于Ⅳ-Ⅵ族化合物半导体异质结独特的扭转界面.进一步的研究表明,该二维电子气体系不仅对红外辐射有明显响应,而且它还表现出狄拉克费米子的性质.本文系统综述了近年来Ⅳ-Ⅵ族化合物半导体异质结二维电子气研究取得的主要进展.首先对Ⅳ-Ⅵ族化合物半导体异质结扭转界面二维电子气的形成机理进行了介绍;然后讨论该二维电子气在低温强磁场下的输运性质,并分析了它的拓扑性质以及在自旋器件方面的应用前景;最后,展示了基于该二维电子气研制的中红外光电探测器.  相似文献   

2.
ZnTe(110)表面电子态及其弛豫对表面电子态的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
马丙现  贾瑜  范希庆 《物理学报》1998,47(6):970-977
给出了Ⅱ-Ⅵ族半导体化合物ZnTe(110)表面电子特性的理论研究.考虑最近邻的sp3s模型描述体态电子结构,使用散射理论方法,给出了理想和弛豫ZnTe(110)表面的波矢分辨的电子态密度和表面投影带结构.结果表明:弛豫的ZnTe(110)表面在带隙中没有表面态存在.在价带中的表面态及表面共振态和其他弛豫的Ⅲ-Ⅴ族及Ⅱ-Ⅵ族半导体的(110)表面具有相似的特征.与实验结果及第一性原理的自洽赝势计算结果相比,计算的结果符合得很好. 关键词:  相似文献   

3.
徐天宁  吴惠桢  隋成华 《物理学报》2008,57(12):7865-7871
窄带隙半导体异质结构的自旋效应最近受到了国际上的很大关注.Ⅳ-Ⅵ族半导体具有各向异性和多能谷的特征,因此可以预期Rashba自旋效应在不同取向的Ⅳ-Ⅵ族半导体量子阱结构中存在显著差异.计算了多个取向的Pb1-ySryTe/PbTe/Pb1-xSrxTe非对称量子阱中的Rashba分裂能,结果表明[100]取向的PbTe量子阱的Rashba分裂能在阱宽为5.0nm时 关键词: Ⅳ-Ⅵ族半导体 非对称量子阱 Rashba效应 自旋-轨道耦合分裂  相似文献   

4.
蔡元学  掌蕴东  党博石  吴昊  王金芳  袁萍 《物理学报》2011,60(4):40701-040701
分析了Ⅲ-Ⅴ与Ⅱ-Ⅵ族半导体材料的光学特性,证明半导体慢光介质不但可以提高干涉仪的光谱灵敏度,而且可以获得远大于气体慢光介质的工作光谱范围.实验证明,基于慢光介质GaAs的干涉仪光谱灵敏度相对于传统的干涉仪提高约3.2倍. 关键词: 干涉仪 非线性光学 Ⅲ-Ⅴ与Ⅱ-Ⅵ族半导体材料  相似文献   

5.
超晶格材料是用现代薄膜生长技术制成的一种新型材料,它在过去的自然界中从未存在过,是一种完全新的人工制造的晶体. 1970年,美国IBM公司的江崎玲于奈(L.Esaki)和朱兆祥首次在GaAs半导体上制成了超晶格结构[1].以后,半导体超晶格的研究工作得到了很快的发展,不仅研制出GaAs和各种Ⅲ-V族化合物超晶格材料,而且Ⅳ-Ⅳ族、Ⅱ-Ⅵ族、Si超晶格以及非晶态半导体超晶格等也已相继出现,有一些已经获得实用,做成了相当重要的微电子和光电子器件.半导体超晶格以及与之相联系的异质结中的许多物理现象,特别是低维物理现象已引起了人们广泛的兴趣.近…  相似文献   

6.
稀释磁性半导体   总被引:12,自引:0,他引:12  
稀释磁性半导体是指Ⅱ-Ⅵ族、Ⅳ-Ⅵ族、Ⅱ-Ⅴ族或Ⅲ-Ⅴ族化合物中,由磁性过渡族金属离子或稀土金属离子部分地替代非磁性阳离子所形成的新的一类半导体材料。这类材料的突出特点是磁性离子磁矩和能带电子自旋之间存在交换相互作用。由此引起材料性质发生一系列重要变化。本文系统介绍这类材料的各种物理性质,包括能带结构,sp-d和d-d交换作用,磁性质和自旋玻璃特性,光学和磁学性质,输运特性等。最后简单介绍这类材料  相似文献   

7.
纳米微晶结构ZnO及其紫外激光   总被引:20,自引:0,他引:20  
本介绍了的年来研制Ⅱ-Ⅵ族半导体激光器的一个新的途径——ZnO的纳米微晶结构。它分为两大类别:即六角柱形蜂巢状结构和粉末状颗粒结构。都已在近紫外波段实现了室温下光泵激发的受激发射,它将是继Ⅱ-Ⅵ族硒化物和Ⅲ-Ⅳ氮化物之后的新型半导体激光器材料。  相似文献   

8.
Ⅱ-Ⅵ族半导体激光器的新材料——ZnO量子点   总被引:7,自引:0,他引:7  
柯炼 《物理》1999,28(1):30-34
介绍了研制Ⅱ-Ⅵ族半导体激光器方面的一个新途径--自组织生长ZnO量子点微晶结构、ZnO已经实现了室温下光泵激发的受激发射,它将是继Ⅱ-Ⅵ族硒化物、Ⅲ-Ⅴ经物之后的又一种半导体激光器材料。  相似文献   

9.
稀释磁性半导体是指Ⅰ—Ⅵ族、Ⅳ—Ⅵ族、Ⅱ—Ⅴ族或Ⅲ—Ⅴ族化合物中,由磁性过渡族金属离子或稀土金属离子部分地替代非磁性阳离子所形成的新的一类半导体材料。这类材料的突出特点是磁性离子磁矩和能带电子自旋之间存在交换相互作用。由此引起材料性质发生一系列重要变化。本文系统介绍这类材料的各种物理性质,包括能带结构,sp—d和d—d交换作用,磁性质和自旋玻璃特性,光学和磁光性质,输运特性等。最后简单介绍这类材料的应用前景。  相似文献   

10.
本文介绍了近年来研制Ⅱ Ⅵ族半导体激光器的一个新的途径———ZnO的纳米微晶结构。它分为两大类别 :即六角柱形蜂巢状结构和粉末状颗粒结构。都已在近紫外波段实现了室温下光泵激发的受激发射。它将是继Ⅱ Ⅵ族硒化物和Ⅲ Ⅴ族氮化物之后的新型半导体激光器材料。  相似文献   

11.
Work function measurements have been performed on stepped Pt and Au surfaces with (111) terraces and on W surfaces with (110) terraces. In each case the work function decreases linearly with increasing step density and depends on the step orientation. The work function changes are attributed to dipole moments associated with the step edges. The dipole moments per unit step length are larger for open edge structures than for densely packed ones. The dipole moments for Pt are about twice as large as for Au and W.  相似文献   

12.
We present here the characterization of organic/organic′ heterojunctions created from either of two perylene dyes, perylenetetracarboxylicdianhydride (PTCDA) or the bisimide derivative perylenetetracarboxylicdianhydride-N,N′-bis (butyl)imide (C4-PTCDI), and two chloro-metallated donor phthalocyanines (ClAlPc or ClInPc). The perylene dyes were selected to create thin films with the core of the perylene dye parallel to the substrate plane (PTCDA) or nearly vertical to the substrate plane, with layer planes defined by the butyl substituents (C4-PTCDI). We compare the frontier orbital offsets revealed by UV-photoelectron spectroscopy, and quenching of luminescence of the perylene dyes, as a function of Pc coverage. The ionization potentials (IPs) of the Pc layers, the degree to which interface dipoles are formed at the Pc/perylene dye interface, and the degree of quenching of the perylene luminescence are affected by the structure of the Pc/perylene interface. Pc/PTCDA heterojunctions show significant interface dipoles and higher IPs for the first-deposited Pc layers compared to Pc/C4-PTCDI heterojunctions, which show negligible interface dipoles and lower overall IP values for initial Pc layers. Luminescence of the selectively excited perylene layers is quenched by the addition of even submonolayer coverages of Pc. This quenching process occurs as a result of both energy transfer (perylene to Pc) and charge transfer (Pc to perylene). Luminescence from monomeric and aggregated ClAlPc and ClInPc monolayers is seen on C4-PTCDI films, whereas only luminescence from the aggregated forms of these Pcs is seen on PTCDA films. These studies reveal aspects of organic heterojunction energetics which may have important implications for organic solar cell design.  相似文献   

13.
The modelling of interface migration and the associated diffusion mechanisms at the nanoscale level is a challenging issue. For many technological applications ranging from nanoelectronic devices to solar cells, more knowledge of the mechanisms governing the migration of the silicon amorphous/crystalline interface and dopant diffusion during solid phase epitaxy is needed. In this work, silicon recrystallisation in the framework of solid phase epitaxy and the influence on orientation effects have been investigated at the atomic level using empirical molecular dynamics simulations. The morphology and the migration process of the interface has been observed to be highly dependent on the original inter-facial atomic structure. The [100] interface migration is a quasi-planar ideal process whereas the cases [110] and [111] are much more complex with a more diffuse interface. For [110], the interface migration corresponds to the formation and dissolution of nanofacets whereas for [111] a defective based bilayer reordering is the dominant re-growth process. The study of the interface velocity migration in the ideal case of defect free re-growth reveals no difference between [100] and [110] and a decrease by a mean factor of 1.43 for the case [111]. Finally, the influence of boron atoms in the amorphous part on the interface migration velocity is also investigated in the case of [100] orientation.  相似文献   

14.
The spontaneous emission rate of two interacting excited atoms near a dielectric interface is studied using the photon closed-orbit theory and the dipole image method. The total emission rate of one atom during the emission process is calculated as a function of the distance between the atom and the interface. The results suggest that the spontaneous emission rate depends not only on the atomic-interface distances, but also on the orientation of the two atomic dipoles and the initial distance between the two atoms. The oscillation in the spontaneous emission rate is caused by the interference between the outgoing electromagnetic wave emitted from one atom and other waves arriving at this atom after traveling along various classical orbits. Each peak in the Fourier transformed spontaneous emission rate corresponds with one action of photon classical orbit.  相似文献   

15.
A plane-wave density functional theory (DFT) study on surface interactions of a cyclo-[Au(μ-Pz)]3 monolayer (denoted as T), Pz = pyrazolate, with Au(111) and Al(111) surfaces (denoted as M′) has been performed. Structural and electronic properties at the M′–T interfaces are determined from individually optimized structures of M′, T and M′–T. Results show that the gold pyrazolate trimer (T) binds more strongly on the Au(111) surface than on Al(111). Charge redistribution has been observed at both M′–T interfaces, where charge is “pushed” back towards the Au(111) surface from the trimer monolayer in Au(111)–T system, while the opposite happens in the Al(111)–T system where the charge is being pushed toward the trimer monolayer from the Al(111) surface. Considerable changes to the work function of Au(111) and Al(111) surfaces upon the trimer adsorption which arise from monolayer vacuum level shifts and dipole formation at the interfaces are calculated. The interaction between cyclo-[Au(μ-Pz)]3 with metal surfaces causes band broadening of the gold pyrazolate trimer in M′–T systems. The present study aids better understanding of the role of intermolecular interactions, bond dipoles, energy-level alignment and electronic coupling at the interface of metal electrodes and organometallic semiconductor to help design metal–organic field effect transistors (MOFETs) and other organometallic electronic devices.  相似文献   

16.
The interface states of Ge-GaAs(111) and (111) heterojunctions are calculated by applying extended Hückel theory to a superlattice with alternating Ge and GaAs atomic layers. The band-edge discontinuity, interface bands, and local densities of states are presented. It is found that no interface states are revealed in the fundamental gaps of Ge and GaAs and that there is an appreciable difference in electronic structure between both kinds of interface.  相似文献   

17.
In situ x-ray photoelectron spectroscopy and ex situ transmission electron microscopy and diffraction studies of a model Fe3O4(111)/MgO(111) polar oxide interface exclude stabilization by interface faceting, reconstruction, or by formation of a continuous interfacial layer with altered stoichiometry, and uncover stabilization by dominant formation of metallic Fe(110) nanocrystals. The iron nanocrystals nucleate both at the interface and within the magnetite film and grow in a Nishiyama-Wasserman orientation relationship with a bimodal size distribution related to twinning. Minority magnetite nanocrystals were also observed, growing in the less polar (100) orientation than the magnetite (111) film. Electron transfer and bond hybridization mechanisms are likely at the metal/oxide and oxide/oxide interfaces and remain to be explored.  相似文献   

18.
The orientational dynamics of rod-like particles with permanent (electric or magnetic) dipole moments in a plane Couette shear flow is investigated using mesoscopic relaxation equations combined with a generalized Landau free energy. The free energy contribution due to the coupling between average alignment and dipole orientation is derived on a microscopic basis. Numerical results of the resulting eight-dimensional dynamical system are presented for the case of longitudinal dipoles and thermodynamic conditions where the equilibrium state is a (polar or non-polar) nematic. Solution diagrams reveal presence of a large variety of periodic, transient chaotic, and chaotic dynamic states of the average alignment and dipole moment, respectively, appearing as a function of Deborah number and tumbling parameter. Compared to rods without dipoles we observe a significant preference of out-of-plane kayaking-tumbling states and, generally, a higher sensitivity to the initial conditions including bistability. We also demonstrate that the average (electric) dipole moment characterizing most of the observed states yields electrodynamic (magnetic) fields of measurable strength.  相似文献   

19.
Heteroepitaxial diamond growth has been attempted on mirror-polished monocrystalline (001), (111), and (110) silicon substrates by microwave plasma CVD. The surface morphology and the crystallographic properties of the films were characterized by means of Scanning Electron Microscopy (SEM), Raman spectroscopy, X-ray diffraction, and X-ray and Raman pole-figure analysis. The results demonstrate epitaxial growth of diamond on both (001) and (111) oriented silicon substrates. Preliminary results give strong evidence for substrate-induced orientation of the diamond crystallites also on (110) oriented silicon substrate. The heteroepitaxy can be assigned to the oriented covalent bonding across the interface between diamond and silicon.  相似文献   

20.
Employing first-principles density functional theory (DFT), the structures and electronic and mechanical properties of Al(111)/ZrB2(0001) heterojunctions are investigated. It is found that both B-terminated ZrB2(0001) and Zr-terminated ZrB2(0001) can form heterojunction interfaces with Al(111) surface. The heterojunction with B-terminated ZrB2(0001) is demonstrated to be most stable by comparing the surface adhesion energies of six different heterojunction models. In the stable configurations, the Al atom is found projecting to the hexagonal hollow site of neighbouring boron layer for the B-terminated ZrB2(001), and locating at the top site of the boron atoms for Zr-terminated ZrB2(001) interface. The mechanisms of interface interaction are investigated by density of states, charge density difference and band structure calculations. It is found that covalent bonds between surface Al atoms and B atoms are formed in the B-terminated heterojunction, whereas the Al atoms and Zr atoms are stabilised by interface metallic bonds for the Zr-terminated case. Mechanical properties of Al/ZrB2 heterojunctions are also predicted in the current work. The values of moduli of Al/ZrB2 heterojunctions are determined to be between those of single crystal Al and ZrB2, which exhibit the transition of mechanical strength between two bulk phases. DFT calculations with the current models provide the mechanical properties for each heterojunction and the corresponding contributions by each type of interface in the composite materials. This work paves the way for industrial applications of Al(111)/ZrB2(0001) heterojunctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号