首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular and electronic structures of 10 free nitroxide radicals have been investigated by HeI/HeII photoelectron spectroscopy (UPS), DFT calculations, and comparison with the spectra of related compounds. We observe that the electronic structure of the nitroxide group is unaffected by substitution except in a carbonyl derivative where nitroxide group orbitals are noticeably stabilized. Also, we have detected small variations in the photoionization cross-sections for singlet and triplet states of cation, the states belonging to the same electron configuration. The relationship between electronic structure and radical reactivity is discussed, and an experimentally based estimate of delocalization energy of the unpaired electron is given. Some conflicting kinetic data on radical reactivity have been analyzed in view of the UPS results.  相似文献   

2.
《Journal of Coordination Chemistry》2012,65(17-18):1571-1576
The synthesis and structure of Pr(III) complex with chelating nitronyl nitroxide radicals of formula [Pr(III)(NIT2Py)2(NO3)3] (NIT2Py?=?2-(2′-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) is reported. Pr(III) is ten-coordinate with three bidentate nitrate anions and two radicals. The radical behaves as a bidentate chelating ligand through one oxygen atom of the nitronyl nitroxide group and one nitrogen atom of a pyridine ring. The electronic spectrum for the complex in THF and magnetic susceptibilities from 77–300?K are reported.  相似文献   

3.
The electronic structure of free radicals and Cu(II) complexes with the nitronyl nitroxide radical and aminonitrone is studied by X-ray photoelectron spectroscopy (XPS). N1s XPS spectra of nitrogen atoms of Cu(II) complexes with aminonitrones confirm the diamagnetic nature of the ligands. The binding energies of the main peak and the intense satellite structure in the Cu2p 3/2,1/2 spectra of the complexes under study correspond to the Cu(II) state. The structure of the satellite in the Cu2p 3/2,1/2 spectrum depends on the environment of the metal ion.  相似文献   

4.
The multispin systems consisting of spin-correlated radical pairs (SCRPs) and stable nitroxide radicals, localized in micelles of sodium dodecyl sulfate (SDS), were studied by ESR and pulse laser photolysis techniques. In all the systems studied, the stable nitroxide radicals exert no effect on the shape of the ESR spectra of the SCRPs (in particular, on the shape of their antiphase structure) and on the decay kinetics of the ESR signal of the SCRPs. In the SDS micelles, the electron spin polarization transfer from the nonequilibrium electron spin states of the molecular triplets (SCRP precursors) is the most efficient mechanism of generation of the electron spin polarization in nitroxide radicals. The experimental data also show that the nitroxide radicals and SCRP radicals are most probably distributed uniformly in the micellar phase. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1390–1401, July, 2008.  相似文献   

5.
This paper reports the synthesis, structures, and magnetic and optical properties of a series of gadolinium(III) (1a-4a) and europium(III) (1b-4b) complexes with nitronyl or imino nitroxide radicals. The crystal structures of compounds 1a and 1b consist of [Ln(III)(radical)(2)(NO(3))(3)] entities in which the gadolinium(III) (1a) or europium(III) ion (1b) is 10-coordinated to two nitronyl nitroxide radicals and three nitrato ligands. The crystal structures of compounds 2a-4a and 2b-4b consist of [Ln(III)(hfac)(3)(radical)] entities in which the gadolinium(III) (2a-4a) or europium(III) ion (2b-4b) is 8-coordinated to one nitronyl (2a and 2b) or one imino (3a, 4a and 3b, 4b) nitroxide radical and three hexafluoroacetylacetonato ligands. The gadolinium(III) complexes (1a-4a) are isostructural with their europium(III) analogues (1b-4b). The magnetic properties of the gadolinium complexes were studied. Along the series 1a-4a only compound 2a exhibits a ferromagnetic Gd(III)-radical coupling (J(Gd-rad) = +1.7 cm(-1)), while for the others this coupling is antiferromagnetic (1a: J(Gd-rad1) = -4.05 cm(-1) and J(Gd-rad2) = -0.80 cm(-1); 3a: J(Gd-rad) = -2.6 cm(-1); 4a: J(Gd-rad) = -1.9 cm(-1)). The first full luminescence spectra of lanthanide complexes with free radical ligands are reported between 650 and 1200 nm. The rich vibronic structure in luminescence and absorption spectra indicates that several excited states define the absorption spectra between 400 and 800 nm. Qualitative trends can be established between magnetic ground state properties and the energies and fine structure of the title compounds.  相似文献   

6.
A Zn(Ⅱ) complex with nitronyl nitroxide radicals [Zn(NIT3Py)2Cl2] (1) (NIT3Py=2-(3′-pyridinyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) has been synthesized and structurally characterized by X-ray diffraction crystal structure determination method. The complex has a mononuclear-metal structure in which each Zn(Ⅱ) ion adopts a distorted tetrahedral geometry and is coordinated by two Cl- anions and two pyridyl-N atoms from two NIT3Py radical ligands. The magnetic measurements show the weak antiferromagnetic interaction between the nitroxide radicals through the diamagnetic Zn(Ⅱ) ion. CCDC: 292363.  相似文献   

7.
Fourier‐transform ion cyclotron resonance mass spectrometry has been used to examine gas‐phase reactions of four different nitroxide free radicals with eight positively charged pyridyl and phenyl radicals (some containing a Cl, F, or CF3 substituent). All the radicals reacted rapidly (near collision rate) with nitroxides by radical–radical recombination. However, some of the radicals were also able to abstract a hydrogen atom from the nitroxide. The results establish that the efficiency (kreaction/kcollision) of hydrogen atom abstraction varies with the electrophilicity of the radical, and hence is attributable to polar effects (a lowering of the transition‐state energy by an increase in its polar character). The efficiency of the recombination reaction is not sensitive to substituents, presumably due to a very low reaction barrier. Even so, after radical–radical recombination has occurred, the nitroxide adduct was found to fragment in different ways depending on the structure of the radical. For example, a cationic fragment was eliminated from the adducts of the more electrophilic radicals via oxygen anion abstraction by the radical (i.e., the nitroxide adduct cleaves heterolytically), whereas adducts of the less electrophilic radicals predominantly fragmented via homolytic cleavage (oxygen atom abstraction). Therefore, differences in the product branching ratios were found to be attributable to polar factors. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 216–229 2004  相似文献   

8.
A method of identification of the electronic structure of stable nitroxide radical complexes with organic ligands is developed. The idea of this approach is that the concentration dependences of the paramagnetic shifts and line widths of the NMR spectra of two ligands in solution depend on whether these ligands form complexes with the same radical orbital or with different orbitals. In the latter case the complexation of one ligand should not influence the paramagnetic shift and line broadening of another ligand molecule present in the solution. In contrast, in the former case such influence should exist since both ligands are in competition. On this basis different schemes of complexation are considered and theoretical expressions for paramagnetic shifts and line widths are derived that show what kind of experimental data is required to identify the structure of the complex. The theory developed can be generalized to other paramagnetic complexes of radicals, ions and molecules.  相似文献   

9.
Hong J  Zhuang Y  Ji X  Guo X 《The Analyst》2011,136(12):2464-2470
We developed a novel spin-labeled terbium complex Tb(3+)/cs124-DTPA-TEMPO (1) by covalently labeling a nitroxide radical on the terbium complex for monitoring free radicals of various areas. This lanthanide complex probe shows a high EPR signal which resulted from the nitroxide radical moiety, and is weakly luminescent which resulted from the intramolecular quenching effect of the nitroxide radical on sensitised terbium luminescence. The intensity of both the EPR and luminescence can be modulated by eliminating the paramagnetism of the nitroxide radical through recognition of a carbon-centered radical analyte and thus gives a quantification of the analyte. We have preliminarily applied this probe in the luminescent detection of model carbon-centered radicals and hydroxyl radicals (·OH). This probe is water-soluble and contains lanthanide-luminescence properties, favorable for the time-resolved luminescence technique. The investigation of the intramolecular quenching process has showed that the labeled nitroxide radical quenches multiple excited states of the terbium complex, resulting in highly efficient quenching of terbium luminescence. This probe is the first example of intramolecular modulation of lanthanide luminescence by a nitroxide radical.  相似文献   

10.
The use of B3LYP/6-311++G(d,p) and MP2/6-311++G(d,p) calculations on TEMPO and four related nitroxide radicals having another oxygen functionality (ketone, hydroxyl and ether) has allowed to determine the relative basicities (thermodynamic and hydrogen-bonded) of the oxygen lone pair relative to the nitroxide radical. The differences are small, especially the B3LYP ones, but in all cases they favor the radical. This is consistent with experimental results in the case of the hydroxyl group but not in the case of the keto group.  相似文献   

11.
The photoelectron spectra of the nitroxide radicals, di-tert-butylnitroxide (DTBN) and 2,2,6,6-tetramethyl-piperidine-N-oxyl, have been studied and molecular orbital calculations made. The adiabatic first ionization potentials were found to be 6.77 and 6.73 eV for these two nitroxide radicals respectively. Four vertical ionization potentials which are common to each nitroxide radical were attributed to ionization of the odd electron in the NO anti-bonding π orbital, oxygen lone pair electrons and NO bonding π electrons. Doublet splitting of the lone pair electron peak with different peak intensities can be quantitatively understood in terms of triplet and singlet states of the photoionized nitroxide cation.  相似文献   

12.
Zhou  Jiawen  Zhu  Weiya  Zeng  Miao  Yang  Qingqing  Li  Ping  Lan  Linfeng  Peng  Junbiao  Li  Yuan  Huang  Fei  Cao  Yong 《中国科学:化学(英文版)》2019,62(12):1656-1665
Stable radicals are challenging to prepare due to their intrinsic high reactivity. Herein, three trisphenolamine radicals were readily synthesized and exhibited unexpected thermal/electrochemical stability and semiconductor property. These three nitroxide radicals could be considered as a class of aromatized nitro groups or HNO_3 derivatives. The closed-shell nitro-like and open-shell nitroxide resonance structure contribute to their outstanding stability. Furthermore, the tunable ground states, extremely low band gap and p-type charge transport properties were systematically investigated. More importantly, the work presents the concept of aromatic inorganic acid radical(AIAR) and aggregation-induced radical(AIR) mechanism to understand the intrinsic structureproperty relationship of these radicals. In addition, we provide a novel strategy for the design of stable and low bandgap radicals for organic electronics, magnetics, spintronics, etc.  相似文献   

13.
Photolysis of ketones (1, 1-oMe, 2, 2-oMe, 3, and 4) adsorbed on ZSM-5 zeolites produces persistent carbon-centered radicals that can be readily observed by conventional steady-state EPR spectroscopy. The radicals are persistent for time periods of seconds to many hours depending on the supramolecular structure of the initial radical@zeolite complex and the diffusion and reaction dynamics of radicals produced by photolysis. The structures of the persistent radicals responsible for the observed EPR spectra are determined by a combination of alternate methods of generation of the same radical, by deuterium substitution, and by spectral simulation. A clear requirement for persistence is that the radicals produced by photolysis must either separate and diffuse from the external to the internal surface or be generated within the internal surface and separate and diffuse apart. The persistence of radicals located on the internal surface is the result of inhibition of radical-radical reactions. Radicals that are produced on the external surface and whose molecular structure prevents diffusion into the internal surface are transient because radical-radical reactions occur rapidly on the external surface. The reactions of the persistent radicals with oxygen and nitric oxide were directly studied in situ by EPR analysis. In the case of reaction with oxygen, persistent peroxy radicals are formed in high yield. The addition of nitric oxide scavenges persistent radicals and leads initially to a diamagnetic nitroso compound, which is transformed into a persistent nitroxide radical by further photolysis. The influence of variation of radical structure on transience/persistence is discussed and correlated with supramolecular structure and reactivity of the radicals and their parent ketones.  相似文献   

14.
用亚硝基丁烷(TNB)、亚硝基苯和C-苯基-N-叔丁基硝酮作为自旋捕获剂来捕获和检出一些二酰基过氧化物类化合物分解时形成的短命烷基自由基. 报导了烷基自由基对自旋捕获剂加成的氮氧化物自由基的电子自旋共振谱, 并观察到2,4,4-三甲基戊基自由基中α-CH2的氢是非对映和非等价的. 据此, 认为与这一类自由基的加合物产生的电子自旋共振谱与其它类型自由基是不同的.  相似文献   

15.
Alkoxyamines and persistent nitroxide (= aminoxyl) radicals are important regulators of nitroxide‐mediated radical polymerization. Since polymerization times decrease with the increasing homolysis rate constant of the C? ON bond homolysis between the polymer chain and the aminooxy moiety, the factors influencing the cleavage rate constant are of considerable interest. It has already been shown that the value of the homolysis rate constant kd is very sensitive to the stabilization of both released radical species. X‐Ray, EPR, and kinetic data showed that the intramolecular H‐bonding radical in the 1‐(diethoxyphosphoryl)‐2,2‐dimethylpropyl 2‐hydroxy‐1,1‐dimethylethyl nitroxide ( 3a ) (homologue of 2‐hydroxy‐1,1‐dimethylethyl 1‐phenyl‐2‐methylpropyl nitroxide ( 2a )) did not occur with the nitroxide moiety as expected but with the phosphoryl group. However, the polymerization rate of styrene (= ethenylbenzene) was significantly enhanced.  相似文献   

16.
Various hybrid compounds comprised of two types of nitroxide radicals and either a pentamethine (Cy5) or trimethine cyanine (Cy3) were synthesized. The nitroxide radicals were linked either via an ester-bond to one or two N-alkyl carboxyl-terminated groups of Cy5, or via two amido-bonds (aminocarbonyl or carbonylamino group) to the 5-position of the indolenine moieties of Cy5 and Cy3. Changes in fluorescence and ESR intensities of the hybrid compounds were measured before and after addition of Na ascorbate in PBS (pH 7.0) to reduce the radicals. Among the hybrid compounds synthesized, those that linked the nitroxide radicals via an aminocarbonyl residue at the 5-position of the indolenine moieties on Cy5 and Cy3 exhibited a 1.8- and 5.1-fold increase in fluorescence intensity with the reduction of the nitroxide segment by the addition of Na ascorbate, respectively. In contrast, fluorescence intensity was not enhanced in the other hybrid compounds. Thus, the hybrid compounds which exhibited an increase in fluorescent intensity with radical reduction can be used in the quantitative measurement of reducing species such as Fe(2+) and ascorbic acid, and hydroxyl radicals. Because these hybrid compounds have the advantage of fluorescing at longer wavelengths-661 (Cy5) or 568 (Cy3)nm, respectively, they can be used to measure radical-reducing species or radicals either in solution or in vivo.  相似文献   

17.
Both electron paramagnetic resonance (EPR) and electronic absorption spectroscopy have been employed to investigate the reaction of a guanine-rich DNA nucleotide-hemin complex (PS2.M-hemin complex) and organic peroxide (t-Bu-OOH). Incubation of the PS2.M-hemin complex with t-Bu-OOH resulted in the time-dependent decrease in the heme Soret with concomitant changes to the visible bands of the electronic absorbance spectrum for the PS2.M-hemin complex. Parallel EPR studies using the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) combined with spectral simulation demonstrated the presence of tert-butyloxyl, carbon-centered methyl, and methyl peroxyl radicals as well as a simple nitroxide (triplet) signal. Experiments, performed by maintaining a constant ratio of t-Bu-OOH/PS2.M-hemin complex ( approximately 35 mol/mol) while varying DMPO concentration, indicated that the relative contributions of each radical adduct to the composite EPR spectrum were significantly influenced by the DMPO concentration. For example, at DMPO/PS2.M-hemin of 10-50 mol/mol, a complex mixture of radicals was consistently detected, whereas at high trapping efficiency (i.e., DMPO/PS2.M-hemin of approximately 250 mol/mol) the tert-butyloxyl-DMPO adduct was predominant. In contrast, at relatively low DMPO/PS2.M-hemin complex ratios of < or =5 mol/mol, a simple nitroxide three-line EPR signal was detected largely in the absence of all other radicals. Together, these data indicate that tert-butyloxyl radical is the primary radical likely formed from the homolytic cleavage of the O-O peroxy bond of t-Bu-OOH, while methyl and methyl peroxyl radicals result from beta-scission of the primary tert-butyloxyl radical product.  相似文献   

18.
The geometries of acyclic and three-membered ring (nitroxide) H4C2NO radicals in their ground 2Π electronic states have been optimized completely at ab initio UHF and ROHF theoretical levels with the STO-3G and the 6-31G** basis sets. The optimizations favour the cyclic nitroxide structure energetically. However ΔE(acyclic - cyclic) at the UHF and ROHF/6-31G** levels are only 3.2 and 1.9 kcal mol-1, respectively. Incomplete MP2/6-311G** optimizations support these results. The zero-point energy computed at the ROHF/6-31G** level for the nitroxide radical is 2.5 kcal mol-1 higher than that for the acyclic structure, thus reversing the relative energies by 0.6 kcal mol-1. The energies of the two radical structures, relative to the sum of those for ethylene and NO, are very close to literature values of the activation energies for the thermal, NO catalyzed geometrical isomerizations of olefins. Thus cyclic nitroxide intermediates may play a role not only in the Hg 6(3P1) photosensitized, but also in the thermal, NO-catalyzed geometric isomerizations of olefins. Paper dedicated to Professor Otto P. Strausz; presented in part at the 75th Canadian Chemical Congress and Exhibition, Edmonton, May 31 – June 4, 1992.  相似文献   

19.
通过苯乙烯或甲基丙烯酸甲酯与含氮氧稳定自由基的单体进行原子转移自由基共聚合 ,研究了共聚合反应的条件及动力学 ,成功地合成出侧链含TEMPO基团的氮氧稳定自由基聚合大分子引发剂 .大分子引发剂的结构通过核磁共振谱图进行确证 ,并对共聚合反应的历程进行了探讨  相似文献   

20.
The group frequency of the N-O radical stretching vibration has received scant attention in the literature. The few existing treatments of the vibrational spectroscopy of nitroxides are incomplete at best and potentially misleading to workers in the field. To close this gap in the available knowledge, the existing literature on the vibrational spectra of nitroxide stable free radicals is critically reviewed with particular reference to the wavenumber position of the N-O stretching vibration, nu(N-O). Poor evidentiary bases for the assignment nu(N-O) were found in many instances. Ab initio Density Field Theory calculations using a model chemistry of UB3LYP at the 6-311++G(d,p) level were performed to obtain a theoretical band position of nu(N-O) for comparison with the published data. Large discrepancies between the theoretical and experimental values were found for the radical 3-carbamoyl-2,2,5,5-tetramethyl-3-pyrrolin-1-yloxyl, which currently sets the lower limit of the accepted wavenumber range of nu(N-O), as well as for the nitronyl and iminyl nitroxides. The wavenumber position of nu(N-O) was found to occur in the range 1450-1420cm(-1) for 5-membered cyclic nitroxides and 1395-1340cm(-1) for 6-membered cyclic and acyclic nitroxides. In nitronyl nitroxides, the symmetric stretching vibration occurs in the region 1470cm(-1), but coupling to other modes makes specific band assignments problematic for the nitronyl nitroxide group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号