首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The title compounds, 4 and 7 , have been prepared from the corresponding α‐amino acid derivative selenocystine ( 1 ) by the following sequence of steps: cleavage of the Se? Se bond with NaBH4, p‐methoxybenzyl (PMB) protection of the SeH group, Fmoc or Boc protection at the N‐atom and Arndt–Eistert homologation (Schemes 1 and 2). A β3‐heptapeptide 8 with an N‐terminal β3‐hSec(PMB) residue was synthesized on Rink amide AM resin and deprotected (‘in air’) to give the corresponding diselenide 9 , which, in turn, was coupled with a β3‐tetrapeptide thiol ester 10 by a seleno‐ligation. The product β3‐undecapeptide was identified as its diselenide and its mixed selenosulfide with thiophenol (Scheme 3). The differences between α‐ and β‐Sec derivatives are discussed.  相似文献   

2.
Density‐functional based calculations were used to investigate self‐assembled monolayers of different alkylphosphonic acids on corundum α‐Al2O3 (0001), bayerite β‐Al(OH)3 (001) and boehmite γ‐AlOOH (010) surface models. Mono‐, bi‐, and tridentate adsorption modes were considered. In addition, the organization of single adsorbed molecules was compared to the organization at full surface coverage. The height (thickness) of the self‐assembled monolayers is always shorter than the length of the phosphonic acid molecules due to tilting of the alkyl chains. Tilt angles at full surface coverage are very similar to the tilt angle of a single adsorbed molecule, which indicates that the density of the self‐assembled monolayers is limited by the density of adsorption sites. The lateral interactions between alkyl chains are evidenced by small torsions of the adsorbed molecules, which may serve to minimize the repulsion forces between interchain hydrogen atoms. Similar tilt angles were obtained for mono‐, bi‐, and tridentate adsorptions. Hence, the coordination mode cannot be characterized by the molecule tilting.  相似文献   

3.
Density functional calculations have been performed to comparatively investigate two possible pathways of Au(I)‐catalyzed Conia‐ene reaction of β‐ketoesters with alkynes. Our studies find that, under the assistance of trifluoromethanesulfonate (TfO), the β‐ketoester is the most likely to undergo Model II to isomerize into its enol form, in which TfO plays a proton transfer role through a 6‐membered ring transition state. The coordination of the Au(I) catalyst to the alkynes triple bond can enhance the eletrophilic capability and reaction activity of the alkynes moiety, which triggers the nucleophilic addition of the enol moiety on the alkynes moiety to give a vinyl‐Au intermediate. This cycloisomerizaion step is exothermal by 21.3 kJ/mol with an energy barrier of 56.0 kJ/mol. In the whole catalytic process, the protonation of vinyl‐Au is almost spontaneous, and the formation of enol is a rate‐limiting step. The generation of enol and the activation of Au(I) catalyst on the alkynes are the key reasons why the Conia‐ene reaction can occur in mild condition. These calculations support that Au(I)‐catalyzed Conia‐ene reactions of β‐ketoesters with alkynes go through the pathway 2 proposed by Toste.  相似文献   

4.
The adsorption of 1,1‐diamino‐2,2‐dinitroethylene (FOX‐7) molecule on the Al(111) surface was investigated by the generalized gradient approximation (GGA) of density functional theory (DFT). The calculations employ a supercell (4×4×2) slab model and three‐dimensional periodic boundary conditions. The strong attractive forces between oxygen and aluminum atoms induce the N? O bond breaking of the FOX‐7. Subsequently, the dissociated oxygen atoms and radical fragment of FOX‐7 oxidize the Al surface. The largest adsorption energy is ?940.5 kJ/mol. Most of charge transfer is 3.31e from the Al surface to the fragment of FOX‐7 molecule. We also investigated the adsorption and decomposition mechanism of FOX‐7 molecule on the Al(111) surface. The activation energy for the dissociation steps of P2 con?guration is as large as 428.8 kJ/mol, while activation energies of other con?gurations are much smaller, in range of 2.4 to 147.7 kJ/mol.  相似文献   

5.
The adsorption and decomposition of HMX and CL‐20 molecules on the Al(111) surface were investigated by the generalized gradient approximation of density functional theory. The calculations employed a supercell (6 × 6 × 3) slab model and three‐dimensional periodic boundary conditions. The strong attractive forces between HMX (or CL‐20) molecule and Al atoms induce the breaking of N‐O and N‐N bonds in nitro group. Subsequently, the dissociated oxygen atoms, NO2 groups, and radical fragments of HMX or CL‐20 oxidize the Al surface. The largest adsorption energy is ?1792.7 kJ/mol in B1, where CL‐20 decomposes into four O atoms and a CL‐20 fragment. With the number of the radical species in adsorption configurations increases, the corresponding adsorption energy increases greatly. We also investigated the decomposition mechanism of HMX and CL‐20 molecules on the Al(111) surface. The activation energies (E a) for the dissociations A2, A3, B1, and B6 are 31.2, 47.9, 75.5, and 75.9 kJ/mol, respectively. Although CL‐20 is more sensitive than HMX in its gaseous state, the E a of CL‐20 is higher than that of HMX when they adsorb and decompose on the Al(111) surface, which indicates that the HMX is even easier to decompose on Al(111) surface as compared with CL‐20. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Ca2+ cations were generally added to facilitate the coagulation of stable fine clay mineral dispersion due to the specific adsorption of their first hydrolysis CaOH+ species at pH near 10. The adsorption of CaOH+ on dry and hydrated (001) basal surface and (010) surface of Na‐montmorillonite was investigated by using density functional theory method combined with the periodic slab model method. The adsorption energies and geometries, Mulliken charge, electron density difference, and density of state were presented and discussed. It was found that the adsorption energy of CaOH+ on (010) edge surface of Na‐montmorillonite (?328.8 kJ/mol) was much larger than that (?126.9 kJ/mol) on (001) basal surface. The presence of waters could increase the adsorption energy of CaOH+ on (001) surface but affect that on (010) surface slightly. The protons in Si–OH and Al–OH2 groups as well as the OH2 ligands in Al–OH2 group on (010) edge surface were easily dissociated and coordinated to CaOH+ to form new waters. CaOH+ was the most steady adsorption species among CaOH+, Ca2+ cation, and H2O molecule on both (001) and (010) surfaces. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
《Electroanalysis》2006,18(5):517-520
The semi‐derivative technique was adopted to improve the resolution and surfactant was added to sample solution to enhance the sensitivity, α‐ and β‐naphthol isomers could be determined directly and simultaneously at glassy carbon electrode modified with carbon nanotubes network joined by Pt nanoparticles. In 0.1 mol L?1 HAc‐NaAc buffer solution (pH 5.8), the linear calibration ranges were 1.0×10?6 to 8.0×10?4 mol L?1 for both α‐ and β‐naphthols, with detection limits of 5.0×10?7 for α‐ and 6.0×10?7 mol L?1 for β‐naphthol. The amount of naphthol isomers in artificial wastewater has been tested with above method, and the recovery was from 98% to 103%.  相似文献   

8.
密度泛函理论研究十二烷硫醇在Au(111)面上的吸附   总被引:1,自引:0,他引:1  
采用第一性原理方法研究了十二烷硫醇(C12H25SH)分子在Au(111)面上未解离和解离吸附的结构、能量和吸附性质,在此基础上分析判断长链硫醇分子在Au(111)面吸附时S―H键的解离, 以及分子链长度对吸附结构和能量的影响. 计算了S原子在不同位置以不同方式吸附的系列构型, 结果表明在S―H键解离前和解离后,均存在两种可能的表面结构, 直立吸附构型和平铺吸附构型; 未解离的C12H25SH分子倾向于吸附在top位, 吸附能为0.35-0.38 eV; H原子解离后C12H25S基团倾向于吸附在bri-fcc位, 吸附能量为2.01-2.09 eV. 比较分析未解离吸附和解离吸附, 发现C12H25SH分子未解离吸附相较于解离吸附要稳定, 未解离吸附属于弱化学吸附.局域电子态密度和差分电荷密度分析进一步验证了S―H解离后S原子与表面之间成键的数目增加, 而且键合更强. 同时我们发现长链硫醇的吸附能量较短链硫醇的吸附能量略大, S原子与表面Au原子之间的距离略小.  相似文献   

9.
Four new triterpenoidal saponins acylated with monoterpenic acid, i.e., adianthifoliosides C, D, E, and F ( 1 – 4 ), besides the two known julibroside III and the monodesmonoterpenyl elliptoside A, were isolated from the roots of Albizia adianthifolia. Their structures were elucidated on the basis of extensive 1D‐ and 2D‐NMR studies and mass spectrometry as 3‐O‐{Oα‐L ‐arabinopyranosyl‐(1→2)‐Oβ‐d‐ fucopyranosyl‐(1→6)‐O‐[β‐d‐ glucopyranosyl‐(1→2)]‐β‐d‐ glucopyranosyl}‐21‐O‐{(2E,6S)‐6‐{{4‐O‐[(2E,6S)‐2,6‐dimethyl‐6‐(β‐D ‐quinovopyranosyloxy)octa‐2,7‐dienoyl]‐β‐d‐ quinovopyranosyl}oxy}‐2‐(hydroxymethyl)‐6‐methylocta‐2,7‐dienoyl}acacic acid 28‐{Oα‐L ‐arabinofuranosyl‐(1→4)‐O‐[β‐d‐ glucopyranosyl‐(1→3)]‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐β‐d‐ glucopyranosyl} ester ( 1 ), 21‐O‐{(2E,6S)‐6‐{{4‐O‐[(2E,6S)‐2,6‐dimethyl‐6‐(β‐d‐ quinovopyranosyloxy)octa‐2,7‐dienoyl]‐β‐d‐ quinovopyranosyl}oxy}‐2‐(hydroxymethyl)‐6‐methylocta‐2,7‐dienoyl}‐3‐O‐{Oβ‐D ‐xylopyranosyl‐(1→2)‐Oβ‐d‐ fucopyranosyl‐(1→6)‐2‐(acetylamino)‐2‐deoxy‐β‐d‐ glucopyranosyl}acacic acid 28‐{Oα‐L ‐arabinofuranosyl‐(1→4)‐O‐[β‐d‐ glucopyranosyl‐(1→3)]‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐β‐d‐ glucopyranosyl} ester ( 2 ), 21‐O‐{(2E,6S)‐6‐{{3‐O‐[(2E,6S)‐2,6‐dimethyl‐6‐(β‐d‐ quinovopyranosyloxy)octa‐2,7‐dienoyl]‐β‐d‐ quinovopyranosyl}oxy}‐2,6‐dimethylocta‐2,7‐dienoyl}‐3‐O‐{Oβ‐D ‐xylopyranosyl‐(1→2)‐Oβ‐d‐ fucopyranosyl‐(1→6)‐2‐(acetylamino)‐2‐deoxy‐β‐d‐ glucopyranosyl}acacic acid 28‐{Oα‐L ‐arabinofuranosyl‐(1→4)‐O‐[β‐d‐ glucopyranosyl‐(1→3)]‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐β‐d‐ glucopyranosyl} ester ( 3 ), and 3‐O‐{Oα‐L ‐arabinopyranosyl‐(1→2)‐Oβ‐d‐ fucopyranosyl‐(1→6)‐O‐[β‐d‐ glucopyranosyl‐(1→2)]‐β‐d‐ glucopyranosyl}‐21‐O‐{(2E,6S)‐2,6‐dimethyl‐6‐(β‐d‐ quinovopyranosyloxy)octa‐2,7‐dienoyl}acacic acid 28‐{Oα‐L ‐arabinofuranosyl‐(1→4)‐O‐[β‐d‐ glucopyranosyl‐(1→3)]‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐β‐d‐ glucopyranosyl} ester ( 4 ).  相似文献   

10.
Density functional theory method has been employed to investigate the adsorption of H2 molecule and H atom on α‐U(001) surface. There exist four initial sites [top (A), triangle‐center (B), long‐bridge (C), and short‐bridge (D)] for H2 and H atom adsorptions on α‐U(001) surface. The Eads (adsorption energy) values on the top sites of H2‐U(001) configurations are around ?0.666 eV, and H2 molecule has been elongated but not broken into H atoms. For the other three sites, the Eads values are around ?1.521 eV. The long‐bridge site is the most reactive site for H2 decomposing. For the H‐U(001) configurations, the Eads are around ?2.904 eV. Top site and short‐bridge site are the most reactive sites for the H atom react on the α‐U(001) surface. Our work reveals that the different reactive sites play discrepant effects on hydrogenation process. Geometric deformations, diffusion paths, and partial density of states of H2‐U(001) and H‐U(001) configurations have also been analyzed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Four new tirucallane triterpenoid saponins, named munronosides I–IV ( 2 – 5 ), along with three known triterpenoids, sapelin B ( 1 ), melianodiol, and (3β)‐22,23‐epoxytirucall‐7‐ene‐3,24,25‐triol, were isolated from the EtOH extract of the whole plants of Munronia delavayi Franch by chromatographic methods. On the basis of spectroscopic evidences, the structures of 2 – 5 were elucidated as (20S,23R,24S)‐21,25‐epoxy‐29‐{{Oβ‐d‐ glucopyranosyl‐(1→3)‐O‐[α‐l‐ rhamnopyranosyl‐(1→6)]‐β‐d‐ glucopyranosyl}oxy}‐23,24‐dihydroxytirucall‐7‐ene‐3,21‐dione ( 2 ), (3β,20S,23R,24S)‐21,25‐epoxy‐29‐{{Oβ‐d‐ glucopyranosyl‐(1→3)‐O‐[α‐l‐ rhamnopyranosyl‐(1→6)]‐β‐d‐ glucopyranosyl}oxy}‐3,23,24‐trihydroxytirucall‐7‐en‐21‐one ( 3 ), (20S,23R,24S)‐24‐(acetyloxy)‐21,25‐epoxy‐29‐{{Oβ‐d‐ glucopyranosyl‐(1→3)‐O‐[α‐l‐ rhamnopyranosyl‐(1→6)]‐β‐d‐ glucopyranosyl}oxy}‐23‐hydroxytirucall‐7‐ene‐3,21‐dione ( 4 ), and (3β,20S,23R,24S)‐24‐(acetyloxy)‐21,25‐epoxy‐29‐{{Oβ‐d‐ glucopyranosyl‐(1→3)‐O‐[α‐l‐ rhamnopyranosyl‐(1→6)]‐β‐d‐ glucopyranosyl}oxy}‐3,23‐dihydroxytirucall‐7‐en‐21‐one ( 5 ).  相似文献   

12.
A new furostanol saponin, sisalasaponin C ( 1 ), and a new spirostanol saponin, sisalasaponin D ( 2 ), were isolated from the fresh leaves of Agave sisalana, along with three other known steroidal saponins and two stilbenes. Their structures were identified as (3β,5α,6α,22α,25R)‐3,26‐bis[(β‐D ‐glucopyrano‐ syl)oxy]‐22‐hydroxyfurostan‐6‐yl β‐D ‐glucopyranoside ( 1 ), (3β,5α,25R)‐12‐oxospirostan‐3‐yl 6‐deoxy‐α‐L ‐mannopyranosyl‐(1→4)‐β‐D ‐glucopyranosyl‐(1→3)‐[β‐D ‐xylopyranosyl‐(1→3)‐β‐D ‐glucopyranosyl‐(1→2)]‐β‐D ‐glucopyranosyl‐(1→4)‐β‐D ‐galactopyranoside ( 2 ), (3β,5α,6α,22α,25R)‐22‐methoxyfurostane‐3,6,26‐triyl tris‐β‐D ‐glucopyranoside, cantalasaponin‐1, polianthoside D, (E)‐ and (Z)‐2,3,4′,5‐tetrahydroxystilbene 2‐O‐β‐D ‐glucopyranosides. The last three known compounds were isolated from the fresh leaves of Agavaceae for the first time. The structures of the new compounds were elucidated by detailed spectroscopic analysis, including 1D‐ and 2D‐NMR experiments, and chemical techniques.  相似文献   

13.
The interaction between {Au3(CH3N?COCH3)3} and {2,4,7‐trinitro‐9‐fluorenone} and the electronic structure and spectroscopic properties of {Au3(CH3N = COCH3)3}n·{2,4,7‐trinitro‐9‐fluorenone} (n = 1,2) are studied at the HF, MP2, and PBE levels. Secondary π‐interactions (Au‐fluorenone) were found to be the main contribution to short‐range stability in the {Au3(CH3N?COCH3)3}n·{2,4,7‐trinitro‐9‐fluorenone} complex. At the MP2 and PBE levels, Au‐C equilibrium distances of 292.3 and 304.0 pm and interaction energies of 105.3 and 24.9 kJ/mol were found, respectively. The absorption spectra of these complexes were calculated by the single excitation time‐dependent method at the PBE level. The theoretical values obtained are in agreement with the experimental range. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

14.
Ab initio SCF and Mφller-Plesset correlation correction methods in combination with counterpose procedure for BSSE correction have been applied to the theroetical studying of dimethylnitroamine and its dimers and trimers.Three optimized stable dimers and two trimers have been obtained.The corrected binding energies of the most stable dimer and trimer were predicted to be -24.68kJ/mol and -47.27kJ/mol,respectively at the MP2/6-31G^*//HF/6-31G^* level.The proportion of correlated interation energies to their total interaction energies for all clusters was at least 29.3 percent,and the BSSE of ΔE(MP2) was at least 10.0kJ/mol.Dispersion and/or electrostatic force were dominant in all clusters.There exist cooperative effects in both the chain and the cyclic trimers.The vibrational frequencies associated with N-O stretches or wags exhibit slight red shifts,but the modes associated with the motion of hydrogen atoms of the methyl group show somewhat blue shifts with respect to those of monomer.Thermodynamic properties of dimethylnitroamine and its clusters at different temperatures have been calculated on the basis of vibrational analyses.The changes of the Gibbs free energies for the aggregation from monomer to the most stable dimer and trimer were predicted to be 14.37kJ/mol and 30.40kJ/mol,respectively,at 1 atm and 298.15K.  相似文献   

15.
Base‐catalyzed H/D‐exchange for α‐ and β‐isophorone ( 1 and 2 , resp.) was monitored by NMR spectroscopy to identify the number and nature of reactive sites. Results show that α‐isophorone ( 1 ) undergoes H/D exchange at up to four different sites depending on reaction conditions. β‐Isophorone ( 2 ), on the other hand, exhibits activity at two sites, predominantly at the α‐position, under comparable conditions. Quantum‐chemical calculations indicate that the thermodynamically more‐stable anions formed upon proton abstraction from isophorone are not favored kinetically in all cases. Thermodynamically unfavorable H/D‐exchange at the α‐position in 1 , which is observed experimentally, is explained via intermediate formation of γ‐isophorone ( 3 ) with subsequent conjugation to the α‐isomer. Differences observed in the reactivities of the two isomers and differences in reactivity of 1 under various conditions in reactions involving proton abstraction as an initial step may be partly explained on the basis of these results.  相似文献   

16.
The isolation and structure elucidation of two new oleanane‐type triterpene glycosides, 29‐(β‐D ‐glucopyranosyloxy)‐2α,3β,23‐trihydroxyolean‐12‐en‐28‐oic acid (=(2α,3β,4α,29α)‐29‐(β‐D ‐glucopyranosyloxy)‐2,3,23‐trihydroxyolean‐12‐en‐28‐oic acid; 1 ) and its C(20)‐epimer, 30‐(β‐D ‐glucopyranosyloxy)‐2α,3β,23‐trihydroxyolean‐12‐en‐28‐oic acid (=(2α,3β,4α,29β)‐29‐β‐D ‐glucopyranosyloxy)‐2,3,23‐trihydroxyolean‐12‐en‐28‐oic acid; 2 ), and a novel nortriterpene glycoside, (17S)‐2α,18β,23‐trihydroxy‐3,19‐dioxo‐19(18→17)‐ abeo‐28‐norolean‐12‐en‐25‐oic acid β‐D ‐glucopyranosyl ester (=(1R,2S,4aS,4bR,6aR,7R,9R,10aS,10bS)‐3,4,4a,4b,5,6,6a,7,8,9,10,10a,10b,11‐tetradecahydro‐1‐hydroxy‐7‐(hydroxymethyl)‐3′,4′,4a,4b,7‐pentamethyl‐2′,8‐ dioxospiro[chrysene‐2(1H),1′‐cyclopentane]‐10a‐carboxylic acid β‐D ‐glucopyranosyl ester; 3 ) from Phlomis viscosa (Lamiaceae) are reported. The structures of the compounds were asigned by means of spectroscopic (IR, 1D‐ and 2D‐NMR, and LC‐ESI‐MS) and chemical (acetylation) methods.  相似文献   

17.
The dynamics and kinetics of the dissociation of hydrogen over the hexagonal close packed platinum (Pt(111)) surface are investigated using Car–Parrinello molecular dynamics and static density functional theory calculations of the potential energy surfaces. The calculations model the reference energy‐resolved molecular beam experiments, considering the degrees of freedom of the catalytic surface. Two‐dimensional potential energy surfaces above the main sites on Pt(111) are determined. Combined with Car–Parrinello trajectories, they confirm the dissociative adsorption of H2 as the only adsorption pathway on this surface at H2 incindence energies above 5 kJ/mol. A direct determination of energy‐resolved sticking coefficients from molecular dynamics is also performed, showing an excellent agreement with the experimental data at incidence energies in the 5–30 kJ/mol range. Application of dispersion corrections does not lead to an improvement in the prediction of the H2 sticking coefficient. The adsorption reaction rate obtained from the calculated sticking coefficients is consistent with experimentally derived literature values.  相似文献   

18.
(−)‐ and (+)‐Conduramine B‐1 ((−)‐ and (+)‐ 5 , resp.) have been derived from (+)‐ and (−)‐7‐oxabicyclo[2.2.1]hept‐5‐en‐2‐one (‘naked sugars’ of the first generation). Although (−)‐ 5 imitates the structure of β‐glucosides, it does not inhibit β‐glucosidases but inhibits α‐mannosidases selectively. N‐Benzylation of (−)‐ 5 improves the potency of conduramine B‐1 as α‐mannosidase inhibitor and also generates compounds inhibiting β‐glucosidases. For instance, (−)‐N‐benzyl‐conduramine B‐1 ((−)‐ 19a ) is a competitive inhibitor of β‐glucosidase from almonds (IC50 = 32 μM , Ki = 10 μM ) and a weak inhibitor of α‐mannosidases from jack bean (IC50 = 171 μM ) and from almonds (IC50 = 225 μM ) whereas (−)‐N‐(4‐phenylbenzyl)conduramine B‐1 ((−)‐ 19g ) is a good inhibitor of α‐mannosidase from jack beans (IC50 = 29 μM , Ki = 4.8 μM ) and a weaker inhibitor of β‐glucosidase from almonds (IC50 = 32 μM , Ki = 7.8 μM ) (Table 1).  相似文献   

19.
Absolute rate constants and some of their Arrhenius parameters are reported for the addition of the 1‐[(tert‐butoxy)carbonyl]ethyl radical (MeC . HCO2Me3) to several mono‐ or 1,1‐disubstituted alkenes in acetonitrile as obtained by time‐resolved electron spin resonance spectroscopy. At 295 K, the rate constants range from 470 M −1 s−1 (but‐1‐ene) to 2.4⋅105 M −1 s−1 (1,1‐diphenylethene), the experimental activation energies range from 26.8 kJ/mol (but‐1‐ene) to 14.7 kJ/mol (styrene), and the frequency factors obey on the average log (A/M −1 s−1)=7.9±0.5. The rate constants of the secondary 1‐[(tert‐butoxy)carbonyl]ethyl radical are close to the geometric mean of those of the related primary [(tert‐butoxy)carbonyl]methyl and the tertiary 2‐(methoxycarbonyl)propan‐2‐yl radicals. The activation energies for addition of these three carboxy‐substituted alkyl radicals are mainly governed by the addition enthalpy but are also substantially lowered by ambiphilic polar effects. The results support a previously derived predictive analysis, and relations to rate constants of acrylate polymerizations are discussed.  相似文献   

20.
Two new sesquiterpene lactones, 6β‐hydroxy‐8α‐ethoxyeremophil‐7(11)‐en‐12,8β‐olide ( 1 ) and 4β,10β‐dihydroxy‐1αH,5αH,11αH‐guaian‐12,8β‐olide ( 2 ), together with 22 known sesquiterpenoids with various structural types, were isolated from Carpesium cernuum (Compositae). Their structures and configurations were elucidated by extensive 1D‐ and 2D‐NMR spectroscopic analysis in combination with MS experiments, and comparison with literature data of related compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号