首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The crystal structure of the title compound, C10H13NO, displays an infinite one‐dimensional network composed of primary amide mol­ecules connected by N—H⋯Ozdbnd;C hydrogen bonds involving the anti NH amide H atoms, thus generating a C(4) motif. This network is additionally stabilized by a weak N—H⋯π interaction between the syn‐oriented amide H atom and the aromatic ring of a neighbouring mol­ecule. The distance between the H atom and the ring centroid is 2.50 Å. The amide group and the aryl moiety are nearly perpendicular, forming an intramolecular dihedral angle of 84.69 (6)°.  相似文献   

2.
The crystal structure of the title compound, [Cu(C2N3)2(C10H8N2)]n, is formed by neutral zigzag chains of the [–NC–N–CN–Cu{(bpy)N(CN)2}–NC–N–CN–] type run­ning along the c axis (bpy is 2,2′‐bi­pyridine). The Cu atoms in the chains are pentacoordinated in the form of a distorted tetragonal pyramid, with a CuN5 chromophore. The coordination sites are occupied by two N atoms of one bpy mol­ecule in the basal plane [Cu—N 2.018 (4) and 2.025 (2) Å] and by three terminal N atoms of two dicyan­amide ligands. One of the dicyan­amide ligands is coordinated in a monodentate fashion through a nitrile N atom in the basal plane [Cu—N 1.963 (4) Å]. The second acts as an end‐to‐end bridging ligand to a neighbouring Cu atom and is coordinated by one nitrile N atom in the basal plane [Cu—N 2.001 (2) Å], while the second nitrile N atom occupies the apical position [Cu—N 2.159 (2) Å] and originates from the bridge connecting another Cu atom. The shortest intrachain Cu?Cu distance is 8.212 (1) Å, as a consequence of the large bridging ligand, whereas the minimum interchain distance between Cu atoms is only 5.77 (7) Å, because of the interdigitation of the chains.  相似文献   

3.
In the title complex, {[Cu(C6H5O3)Cl(H2O)]·H2O}n, the CuII atom has a deformed square‐pyramidal coordination geometry formed by two O atoms of the maltolate ligand, two bridging Cl atoms and the coordinated water O atom. The Cu atoms are bridged by Cl atoms to form a polymeric chain. The deprotonated hydroxyl and ketone O atoms of the maltolate ligand form a five‐membered chelate ring with the Cu atom. Stacking interactions and hydrogen bonds exist in the crystal.  相似文献   

4.
The crystal structure of the title compound, C9H6F3N, at 123 K contains mol­ecules linked together via several C—H?F and C—H?N contacts, the strongest of which are 2.58 and 2.65 Å, respectively. Apparently, an F atom in the CF3 group is able to compete with a cyano N atom for aromatic H atoms but is less prone to interact with the more acidic methyl­ene H atoms. The Ph–CH2CN torsion angle is ?6.4 (2)° and the planar phenyl ring exhibits a typical deformation of the endo angles at the ipso‐C atoms, due to the difference in the electron‐withdrawing power of the CF3 and CH2CN substituents.  相似文献   

5.
The title compound, 3,3′‐(4‐pyridyl­imino)­di­propane­nitrile, C11H12N4, has a twofold axis and consists of a pyridine ring head and two cyano­ethyl tails, the three groups being linked by an N atom. The planar geometry around the amino N atom suggests conjugation with the π‐system of the pyridine ring. The mol­ecules are stacked in a layer structure via relatively weak to very weak intermolecular C—H⃛π and C—H⃛N hydrogen‐bond interactions.  相似文献   

6.
In the title compound, [Ca(C6H5O4)2(C6H6O4)2]·4H2O, which is a kojic acid–Ca2+ complex, the Ca atom is on a twofold axis and is octacoordinated by O atoms from four pyrone ligand mol­ecules. The hydroxyl and ketone O atoms of each ligand form a five‐membered chelate ring with the Ca atom. The crystal structure is stabilized by partial stacking and O—H?O hydrogen bonds.  相似文献   

7.
The title compound, C5H5N5OS·H2O, crystallizes as the monohydrate. Disorder of the H atoms that participate in the hydrogen bonds implies that two different tautomers are present in the crystal structure, one of them with both acidic H atoms attached to the imidazole ring and the other with one acidic H atom on each ring.  相似文献   

8.
The crystal structure of the title compound, [Cu2(C2F3O2)2(C10H8N3O)2]·2CH3CN, contains discrete [Cu2(CF3COO)2(O‐dpa)2] mol­ecules (O‐dpaH is di‐2‐pyridyl­amine 1‐oxide) which have imposed crystallographic twofold symmetry and an aceto­nitrile mol­ecule of solvation. The O‐dpa ligand is both bidentate and bridging, linking two Cu atoms with a separation of 3.4270 (11) Å. Each Cu atom is surrounded by four coordinated atoms that are almost coplanar, with dimensions Cu—N = 1.940 (2) and 1.984 (3) Å, and Cu—O = 1.912 (2) and 1.945 (2) Å.  相似文献   

9.
The title mol­ecule, C16H22O2, reveals Ci point symmetry in the crystal structure. The structure was disordered. The pyran ring is not planar; the O atom lies significantly out of the least‐squares plane (ten times the r.m.s. deviation of all six atoms).  相似文献   

10.
The absolute configuration of the title compound, alter­natively called (+)‐(4,5‐di­hydro‐2,5‐di­phenyl­oxazol‐4‐yl)­methanol, C16H15NO2, has been confirmed as 4S,5S. The hydroxy­methyl group and phenyl ring at the asymmetric C atoms exhibit β and α orientations, respectively. The exocyclic C—C bonds at the asymmetric C atoms are mutually anticlinal (?ac). The hydroxyl group and the N atom of the oxazoline ring are involved in an intermolecular hydrogen bond leading to chains of mol­ecules.  相似文献   

11.
The title compound, C18H26N2S22+·2I·2C3H6O, is an intermediate in the design of the zwitterionic thiolate 4‐(trimethylammonio)benzenethiolate (Tab), in which a pair of aryl‐substituted S atoms are linked by a covalent bond. The central S—S bond length is 2.020 (3) Å and the Car—S—S—Car torsion angle is −84.1 (2)°. The crystal structure is stabilized by nonclassical hydrogen bonds which occur as intramolecular C—H...I interactions and intermolecular C—H...S and C—H...O contacts. In the crystal structure, both the dication and the two symmetrically independent iodide counter‐anions are located on twofold crystallographic axes, whereas the acetone solvent molecule occupies a general position.  相似文献   

12.
In the title compound, [Ag(C2H4N4)2](NO3)·C2H4N4, the Ag atom is surrounded by three cyano­guanidine (cnge) mol­ecules. Two monodentate cnge mol­ecules form strong covalent Ag—N bonds of 2.210 (7) and 2.266 (6) Å through their nitrile N atoms. The third cnge mol­ecule is located in a vacant crystal site and is only weakly coordinated to the Ag atom as a solvate molecule. Inter‐ and intramolecular hydrogen bonds play an important role in the crystal packing.  相似文献   

13.
In the title compound, [Ni(C2H3O)2(C3H4N2)4], the Ni atom is coordinated centrosymmetrically by four N and two O atoms in an octahedral coordination [Ni—N = 1.986 (3) and 2.054 (3) Å; Ni—O = 2.697 (3) Å]. The O atoms of the acetate anions form hydrogen bonds to adjacent imidazole moieties, with the free O atom forming a somewhat shorter bond [N?O = 2.679 (3) and 2.870 (4) Å]. The hydrogen bonds give rise to a two‐dimensional layer structure.  相似文献   

14.
The structures of the cyclic imides cis‐2‐(2‐fluorophenyl)‐3a,4,5,6,7,7a‐hexahydroisoindole‐1,3‐dione, C14H14FNO2, (I), and cis‐2‐(4‐fluorophenyl)‐3a,4,5,6,7,7a‐hexahydroisoindoline‐1,3‐dione, C14H14FNO2, (III), and the open‐chain amide acid raccis‐2‐[(3‐fluorophenyl)carbamoyl]cyclohexane‐1‐carboxylic acid, C14H16FNO3, (II), are reported. Cyclic imides (I) and (III) are conformationally similar, with comparable ring rotations about the imide N—Car bond [the dihedral angles between the benzene ring and the five‐membered isoindole ring are 55.40 (8)° for (I) and 51.83 (7)° for (III)]. There are no formal intermolecular hydrogen bonds involved in the crystal packing of either (I) or (III). With the acid (II), in which the meta‐related F‐atom substituent is rotationally disordered (0.784:0.216), the amide group lies slightly out of the benzene plane [the interplanar dihedral angle is 39.7 (1)°]. Intermolecular amide–carboxyl N—H...O hydrogen‐bonding interactions between centrosymmetrically related molecules form stacks extending down b, and these are linked across c by carboxyl–amide O—H...O hydrogen bonds, giving two‐dimensional layered structures which lie in the (011) plane. The structures reported here represent examples of compounds analogous to the phthalimides or phthalanilic acids and have little precedence in the crystallographic literature.  相似文献   

15.
Bismuth 8-quinolineselenolate Bi(C9H6NSe)3 was synthesized. The molecular and crystal structure of this compound was determined by X-ray diffraction structural analysis. The effect of replacing the ligand atoms Se→S and the role of the unshared electron pair on the formation of the coordination polyhedron of the central bismuth atom in bismuth(III) 8-quinolineselenolate and bismuth(III) 8-quinolinethiolate, which are complexes of a Group V p-element in an incomplete valence state was discussed. Dedicated to the memory of Academician Yurii Bankovsky, the founder of the chemistry of 8-mercaptoquinoline (December 22, 1927–January 28, 2003) on the occasion of the eightieth anniversary of his birth. __________ Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 12, pp. 1866–1874, December, 2007.  相似文献   

16.
A novel trinuclear NiII cluster, {[Ni(H2L)(EtOH)]2(OAc)2Ni} · 2EtOH [H4L:5,5′-Dihydroxy-2,2′-[ethylenedioxybis(nitrilomethylidyne)]diphenol], has been synthesized and structurally characterized. The X-ray crystal structure of the cluster reveals that two acetates coordinate to three nickel ions through Ni–O–C–O–Ni bridges and four μ-phenoxo oxygen atoms from two [Ni(H2L)] units also coordinate to nickel ions. Around three nickel atoms are all octahedral geometries.  相似文献   

17.
The structures of the title compounds, C28H33N3O, (I), and C26H27NO3, (II), together with their two‐photon absorption properties and fluorescence activities are reported. Molecules of (II) reside on crystallographic mirror planes containing the piperidone C=O group and N‐methyl H atoms. Because of the conjugation between the donor and acceptor parts, the central heterocycle in both (I) and (II) exhibits a flattened boat conformation, with deviations of the N atom and the opposite C atom from the planar fragment. The dihedral angles between the coplanar heterocyclic atoms and terminal C6 rings are less than 20° in both (I) and (II). In (I), the N‐methyl group of the ring occupies an equatorial position, but in (II) it is positioned in an axial site. In the crystal structure of (I), weak intermolecular C—H...π(arene) and C—H...O steric contacts link the molecules along the a axis. In the crystal structure of (II), molecules form stacks along the b axis.  相似文献   

18.
The review summarizes the results of the recent author’s research on the synthesis of triple-decker complexes with bridging borole ligand. Electrophilic stacking of sandwich compounds with [(ring)M] n+ (n = 1, (ring)M = (C5R5)Ru, (C4Me4)Co; n = 2, (ring)M = Cp*Co, Cp*Rh, etc.) cationic fragments were used as a general method of synthesis of the complexes. The influence of the substituent at the boron atom on the course of stacking reactions is discussed. The spectral, structural, and electrochemical properties of the complexes synthesized are also considered. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 1–7, January, 2008.  相似文献   

19.
The crystal structure of the title compound, [Fe(C44H20F8N4)(CH3O)], has been determined. The Fe atom lies 0.485 (1) Å out of the plane of the four N atoms to which it is coordinated and from the inversion centre at the origin of the unit cell. The methoxy group is axially coordinated to the Fe atom with O—Fe—N angles of 106.3 (2) and 102.4 (2)°, a C—O—Fe angle of 128.3 (5)° and an Fe—O distance of 1.788 (5) Å. Di­fluoro­phenyl rings are tilted from the porphyrin (por) plane with torsion angles of ?68.1 (6) and 77.7 (5)° across the two Cpor—­C—C—Car systems.  相似文献   

20.
The title compound, C17H13ClN4O2, displays profound and selective activity against Mycobacterium tuberculosis. In the crystal structure, there are two independent molecules in the asymmetric unit. Intermolecular hydrogen bonding between a CH group of the purine ring and the O atom of the furan ring, and also π–π stacking in another direction, builds the three‐dimensional network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号