首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Photobiological activities of the benzo-spaced psoralen analog furonaphthopyranone 3 have been investigated in cell-free and cellular DNA. The molecular geometry parameters of 3 suggest that it should not form interstrand crosslinks with DNA. With cell-free DNA no evidence for crosslinking but also not for monoadduct formation was obtained; rather, the unnatural furocoumarin 3 induces oxidative DNA modifications under near-UVA irradiation. The enzymatic assay of the photosensitized damage in cell-free PM2 DNA revealed the significant formation of lesions sensitive to formamidopyrimidine DNA glyco-sylase (Fpg protein). In the photooxidation of calf thymus DNA by the furonaphthopyranone 3, 0.29±0.02% 8-oxo-7,8-dihydroguanine (8-oxoGua) was observed. With 2'-deoxyguanosine (dGuo), the guanidine-releasing photooxidation products oxazolone and oxoimidazolidine were formed predominately, while 8-oxodGuo and 4-HO-8-oxodGuo were obtained in minor amounts. The lack of a significant D2O effect in the photooxidation of DNA and dGuo reveals that singlet oxygen (type II process) plays a minor role; control experiments with tert -butanol and mannitol confirm the absence of hydroxyl radicals as oxidizing species. The furonaphthopyranone 3 (Ered= -1.93±0.03V) should act in its singlet-excited state as electron acceptor for the photooxidation of dGuo (δGET ca – kcal/mol), which corroborates photoinduced electron transfer (type I) as a major DNA-oxidizing mechanism. A comet assay in Chinese hamster ovary (CHO) AS52 cells demonstrated that the psoralen analog 3 damages cellular DNA upon near-UVA irradiation; however, no photosensitized mutagenicity was observed in CHO AS52 cell cultures  相似文献   

2.
We report the synthesis and characterization of N,N-bis[(7-dimethylamino)phenothiazin-5-ium-3-yl]-4,4-ethylenedipiperidine diiodide (3), consisting of two photosensitizing phenothiazinium rings attached to a central ethylenedipiperidine linker. At all time points (10, 30, 60 min) and all wavelengths (676, 700, 710 nm) tested, photocleavage of pUC19 plasmid DNA (22 degrees C and pH 7.0) was markedly enhanced by 1 microM of 3 in comparison to 1 microM of the parent phenothiazine methylene blue (MB). At concentrations of phenothiazine ranging from 5 to 0.5 microM, the photocleavage levels produced by compound 3 were consistently higher than the cleavage produced using approximately twice the amount of MB (e.g., 710 nm irradiation of 5 microM of 3 and 10 microM of MB cleaved the plasmid DNA in 93% and 71% yields, respectively). Scavenger assays provided evidence for the involvement of singlet oxygen and, to a lesser extent, hydroxyl radicals in DNA damage. Analysis of photocleavage products at nucleotide resolution revealed that direct strand breaks and alkaline-labile lesions occurred predominantly at guanine bases. While compound 3 and MB were both shown to stabilize duplex DNA, the DeltaTm values of calf thymus (CT) and C. perfringens DNAs were approximately three fold higher in the presence of compound 3. Finally, viscometric data indicated that CT DNA interacts with compound 3 and MB by a combination of groove binding and monofunctional intercalation, and with compound 3 by a third, bisintercalative binding mode.  相似文献   

3.
Abstract— The aim of this investigation is the evaluation of DNA interaction of with tetraruthenated porphyrin (TRP) and of DNA damage in the presence of light. Direct-fluorescence and electronic absorption measurements after incubation of DNA with TRP indicate strong binding between pBR322 DNA or calf thymus DNA with the modified porphyrin. Exposure of pBR322 DNA to TRP (up to 3 μ M ) and light leads to single-strand break formation as determined by the conversion of the supercoiled form (form I) of the plasmid into the nicked circular form (form II). Oxidative DNA base damage was evaluated by the detection of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) after irradiation of calf thymus DNA in the presence of the TRP. The data demonstrated a dose and time dependence with each type of DNA damage. These data indicate (1) a specificity of the binding mode and (2) type I and II photoinduced mechanisms leading to strand scission activity and 8-oxodGuo formation. Accordingly, singlet molecular oxygen formation, after TRP excitation, was confirmed by near-infrared emission. From these investigations a potential application of TRP in photodynamic therapy is proposed.  相似文献   

4.
Biolocalisation and photochemical properties of novel macrocyclic photosensitisers, guanidiniocarbonyl-substituted tetraphenylporphyrin (1) and sugar-substituted sapphyrin (2) were investigated by spectroscopic methods. Both photosensitisers absorb in far visible region and showed good tumour localisation. Photosensitiser 2 demonstrated significantly larger absolute and relative to normal tissue (T/N) amount in tumour (330 microg g(-1) wet tissue, T/N=19.0) than photosensitiser 1 did (13 microg g(-1) wet tissue, T/N=2.1). According to iodometric and uric acid assays, compound 1 produced large amount of 1O2 (phidelta=0.60-0.68), while compound 2 showed non-significant 1O2 production (phidelta=0.04). The electronic spectroscopic study confirms that only photosensitiser 1 is able to mediate photooxidation of model compounds (BSA, poly(Trp), Tyr, Trp, and GMP) after light irradiation. Pour photochemical activity of compound 2 was explained by its self-aggregation. Raman spectroscopic study indicated that monomerised photosensitiser 2 effectively damaged BSA and calf thymus DNA after light excitation at the conditions of high excess of these macromolecules.  相似文献   

5.
5',8-Cyclo-2'-deoxyadenosine and 5',8-cyclo-2'-deoxyguanosine in their 5'R and 5'S diastereomeric forms are tandem-type lesions observed among the DNA modifications and identified in mammalian cellular DNA in vivo. These lesions result from the chemistry of the C5' radicals generated by the attack of HO˙ radicals to 2-deoxyribose units. Quantitative determination of these lesions in biological samples as biomarkers of free radical damage is a challenge. Results reported for irradiated samples of calf thymus DNA have been critically reviewed, underlining the need of further research for the potential involvement of these lesions in human health (76 references).  相似文献   

6.
Abstract The photooxidative DNA damage by iV-hydroxy-2-pyri-done (1) is caused by hydroxyl radicals, as confirmed by electron paramagnetic resonance studies with the spin trap 5,5-dimethylpyrroline JV-oxide. Irradiation of the pyridone 1 at 300 nm induced strand breaks in super-coiled pBR322 DNA, while in calf-thymus DNA and 2'-deoxyguanosine (dG), respectively, 8-oxoguanine and 8-oxo-7,8-dihydro-2'-deoxyguanosine were formed. Time-dependent control experiments disclosed that photoprod-ucts of pyridone 1, e.g. 2-pyridone (3), are not responsible for the modification of DNA. Also the photosensitization by the pyridine-2-one chromophore was excluded, because JV-methylpyridine-2-one (2), which cannot generate hydroxyl radicals, was ineffective in the photooxidation of DNA and dG. Thus, the photolysis of pyridone 1 serves as a specific source of hydroxyl radicals for DNA damage, both strand breaks and base modifications.  相似文献   

7.
The tetraruthenated porphyrin, u.-[/wes0-5,1O,15,2O-tet-ra(pyridyl)porphyrin]tetrakis[ftis-(bipyridine)chloride ruthenium(II)] (TRP) is a supramolecular cationic species. The aim of the present investigation was to evaluate the photodynamic properties of TRP and Zn-TRP to damage DNA with emphasis on the mechanistic aspects. The ability for tetraruthenated porphyrin derivatives to induce photosensitization reactions has been determined using 2′-deoxyguanosine as a DNA model compound. The main photooxidation products of the targeted nucleoside were identified and classified according to their mechanisms of formation, involving either a radical pathway (type I) or a singlet oxygen-mediated mechanism (type II). Quantification of the different oxidation products provides a means to evaluate the relative contribution of type I and type II pathways associated with the oxidative photosensitization of 2′-deoxyguanosine by tetraruthenated porphyrin derivatives. Results indicate that x02 plays a major role in the mechanism of photooxidation mediated by these porphyrin derivatives. In addition an increase of the photosensitizing effect in the presence of zinc is observed. For each sensitizer, the ratio between type II and type I photoproducts has been calculated and compared to that of other known dyes such as methylene blue and riboflavin.  相似文献   

8.
A new series of photoactivated DNA oxidizing agents in which an acridine moiety is covalently linked to viologen by an alkylidene spacer was synthesized, and their photophysical properties and interactions with DNA, including DNA cleaving properties, were investigated. The fluorescence quantum yields of the viologen-linked acridines were found to be lower than that of the model compound 9-methylacridine (MA). The changes in free energy for the electron transfer reactions were found to be favorable, and the fluorescence quenching observed in these systems is explained by an electron transfer mechanism. Intramolecular electron transfer rate constants were calculated from the observed fluorescence quantum yields and singlet lifetime of MA and are in the range from 1.06x10(10) s(-1) for 1 a (n=1) to 6x10(8) s(-1) for 1 c (n=11), that is, the rate decreases with increasing spacer length. Nanosecond laser flash photolysis of these systems in aqueous solutions showed no transient absorption, but in the presence of guanosine or calf thymus DNA, transient absorption due to the reduced viologen radical cation was observed. Studies on DNA binding demonstrated that the viologen-linked acridines bind effectively to DNA in both intercalative and electrostatic modes. Results of PM2 DNA cleavage studies indicate that, on photoexcitation, these molecules induce DNA damage that is sensitive to formamidopyrimidine DNA glycosylase. These viologen-linked acridines are quite stable in aqueous solutions and oxidize DNA efficiently and hence can be useful as photoactivated DNA-cleaving agents which function purely by the co-sensitization mechanism.  相似文献   

9.
On irradiation of N-hydroxythiazole-2(3H)-thione 3 at 300 nm, the photoproducts disulfide 4, bisthiazole 5 and thiazole 6 are formed. During this photolysis, hydroxyl radicals are released, which have been detected by spin trapping with 5,5-dimethyl-1-pyrroline N-oxide (DMPO), coupled with electron paramagnetic resonance spectroscopy. In the presence of supercoiled pBR322 DNA, irradiation of thiazolethione 3 induces strand breaks through the photogenerated hydroxyl-radicals, as confirmed by control experiment with the hydroxyl-radical scavenger isopropanol. Singlet oxygen appears not to be involved, as attested by the lack of a D2O isotope effect. During the photoreaction of thiazolethione 3 in the presence of 2'-deoxyguanosine (dG), the latter is photooxidized (ca 10% conversion after 2 h of irradiation) to the 7,8-dihydro-8-oxo-2'-deoxyguanosine as the main oxidation product. The dG conversion levels off after complete consumption of thiazolethione 3 and is suppressed by the addition of the hydroxyl-radical scavenger 2,6-di-tert-butylcresol or DMPO. Since the photoproducts 4-6 are ineffective as sensitizers for the photooxidation of dG and DNA, the hydroxyl radicals released in the photolysis of thiazolethione 3 are the oxidizing species of DNA and dG. These results suggest that the thiazolethione 3 may serve as a novel and effective photochemical hydroxyl-radical source for photobiological studies.  相似文献   

10.
A quantitative study of a model elastomer was performed to gain a deeper insight into photooxidation processes. Since the twofold role of hydroperoxides as excited sensitizer quenchers, and radical initiators has been amply demonstrated, we described the mechanism of energy transfer to repulsive excited states of these substances and quantitatively determined their distribution in the polymeric material, according to their reactivity. In addition, two irradiation wavelengths (λ = 254 nm and λ = 313 nm) were used to demonstrate that behavior of hydroperoxides depends on the nature and the concentration of excited chromophoric groups and accounts for the macroscopic wavelength effect usually observed in the photooxidation of polymers.  相似文献   

11.
陈耀全 《化学学报》1993,51(3):308-312
本文合成了一种含二茂铁侧基的DNA荧光探针-2-(N-二茂铁酰氨丙氧基)-6-氯-9-氨基吖啶, 并对该化合物的紫外可见光谱, 荧光光谱, NMR谱以及它和小牛胸腺DNA的作用与二茂铁侧基的吖啶作了比较和讨论。  相似文献   

12.
PHOTOINITIATED DNA DAMAGE BY MELANOGENIC INTERMEDIATES IN VITRO   总被引:1,自引:0,他引:1  
Cysteinyldopas, metabolic by-products of activated melanocytes, are photochemically unstable in the presence of biologically relevant ultraviolet radiation (i.e. wavelengths > 300 nm). Initial photochemical processes involve free radical production; continued photolysis yields polymeric photoproducts. Radicals produced during 5SCD photolysis were trapped by 5,5-dimethyl-l-pyrrolidine-l-oxide (DMPO) and identified by their ESR spectra. Further characterization by use of nitroso spin trap (2-methvl-2-nitrosopropane-MNP) demonstrated that homolytic cleavage of the -S-CH2 bond of the 5SCD cysteinyl side chain is a significant photochemical pathway. The potential photobiological significance of these reactive intermediates was investigated in vitro using isolated nucleic acids. Radiolabeled 5-[35S]-cysteinyldopa was found to photobind to calf thymus DNA with 300 nm light activation. Under similar conditions, 5-S-cysteinyldopa also induced single strand breakage of 3H-radiolabeled superhelical, circular pBR322 plasmid DNA. The implications of the 5SCD photoinitiated DNA damage and the production of highly reactive free radicals in this process are discussed with respect to the etiology of various skin cancers, particularly malignant melanoma.  相似文献   

13.
UVA‐visible light has been proposed as a risk factor in the photo‐aging of the human eye lens, as well as in the etiology of cataract disease. There is accumulating evidence indicating that photosensitizing reactions mediated by endogenous chromophores, which are generated during human eye lens aging, can play an important role in the generation of these processes. These reactions can lead to protein impairment by inducing non‐enzymatic post‐translational modifications such as protein oxidation and crosslinking. Although numerous chromophores have been characterized as both bound to human eye lens proteins and as unbound low‐molecular‐mass compounds, their contribution to eye lens photoaging and cataract disease is not completely understood. In this article we discuss the photochemical contribution of UV‐filters derived from tryptophan catabolism and advanced glycation end products (AGEs) to human eye lens aging and cataract disease. We also discuss the recently described photosensitizing capacity of chromophores derived from newly discovered glucose and ascorbate degradation as a parallel pathway to their role in AGEs generation.  相似文献   

14.
Fenofibrate and ketoprofen (KP) are two drugs of similar structure derived from that of benzophenone. Both are photoallergic and promote cross reactions in patients. However, the cutaneous photosensitizing properties of KP also include phototoxic effects and are more frequently mentioned. To account for this difference in their in vivo properties, their in vitro photosensitizing properties on DNA were compared. First, it was shown that under irradiation at 313 nm, fenofibric acid (FB), the main metabolite of fenofibrate, photosensitized DNA cleavage by a radical mechanism similar to that proposed for KP but with a 50 times lower efficiency. Furthermore, FB did not photosensitize the formation of pyrimidine dimers into DNA in contrast to KP, which did promote this type of DNA damage. Their difference in efficiency as DNA breakers was compared to their relative photochemical reactivity and the quantum yield of FB photolysis was found to be eightfold lower than that of KP. The reactivity of these drugs cannot explain alone the difference in their photosensitizing properties. Other factors such as the magnitude of the ionic character of the pho-todecarboxylation pathway of these benzophenone-like drugs are considered in the discussion.  相似文献   

15.
Two Eu(III) complexes, [Eu(acac)(3)(dpq)] (1) and [Eu(acac)(3)(dppz)] CH(3)OH (2) {viz. acetylacetonate (acac), dipyrido[3,2-d:20,30-f]quinoxaline (dpq), dipyrido[3,2-a:20,30-c] phenazine (dppz)}, have been synthesized and their DNA binding, photo-induced DNA cleavage activity and cell cytotoxicity are studied. The complexes display significant binding propensity to the calf thymus DNA in the order: 2(dppz) >1(dpq). Cleavage experiments using pBR322 supercoiled DNA suggest major groove binding for 2 and minor groove binding for 1. The mechanistic aspects on natural light (natural light in room during the day) and UV-A (365 nm) irradiation are via a mechanistic pathway involving formation of singlet oxygen and hydroxyl radical as the reactive species. The photo-induced DNA cleavage activity of 2 is also stronger than 1. The cytotoxicity of 1 and 2 against HeLa (cervical) cancer cells show that the IC(50) value of 19.11 ± 3.56 μM and 17.95 ± 5.47 μM, respectively.  相似文献   

16.
Abstract—The proflavine-mediated photosensitization of both double-stranded calf thymus and single-stranded DNA from bacteriophage φ× 174 was followed in terms of the induction of free radicals in frozen solutions by EPR measurements in the presence of oxygen. The effect of the addition of various sulphur-containing substances to the proflavine DNA mixtures was studied and quantitatively expressed for definite amounts of proflavine bound to both DNAs.
Upon irradiation with visible light, RS radicals were observed in the presence of these sulphur-containing substances. Some of them caused a decrease in the amount of peroxide radicals normally induced in the photosensitized DNA. This decrease appeared to be linked to the property of the compounds to interact with DNA in such a way that they modify the binding of proflavine to DNA.
Cysteine, cysteamine, cystamine and cystine, protect calf thymus DNA against the "proflavine and light" free radical induction by 55, 58, 64 ahd 62% respectively. φ× 174 single-stranded DNA is also protected by the addition of cysteamine and cystamine, although to a lesser extent than calf thymus DNA (35%). These protection factors were measured under conditions where strong binding of the dye to the DNA was predominant.  相似文献   

17.
Fifteen complexes of hypocrellin A (HA) with rare earth trivalent ions (except Pm3+) along with the complex of HA with Sc3+ were prepared, and their photodynamic activities, including absorption in the phototherapeutic window (600-900 nm); water-solubility; triplet lifetime; generation of reactive oxygen species (ROS), such as singlet oxygen (1O2), superoxide anion radical (O2-*), and hydroxyl radical (OH*); generation of semiquinone anion radical; and affinity to DNA, as well as photosensitized damage on calf thymus DNA (CT DNA), were compared in detail using the UV-visible spectrum, fluorescence spectrum, spin-trapping EPR technique, and laser photolysis technique. All complexes exhibit a red-shifted absorption spectrum, an increased absorbance above 600 nm, improved water solubility, and an enhanced affinity to CT DNA over the parent HA. For ions that possess low-energy excited states, including Ce3+, Pr3+, Nd3+, Sm3+, Eu3+, Tb3+, Dy3+, Ho3+, Er3+, Tm3+, and Yb3+, the corresponding complexes show undetectable or nearly undetectable fluorescence, a triplet excited-state lifetime, generation of ROS, and photodamage in CT DNA. In contrast, for ions that do not possess low-energy excited states, including Sc3+, Y3+, La3+, Gd3+, and Lu3+, the corresponding complexes exhibit higher photodamage abilities with CT DNA with respect to HA, benefitting from both their comparable or even higher 1O2 quantum yields and an electrostatic affinity that is higher for DNA than HA.  相似文献   

18.
The interaction between double-stranded (ds) calf-thymus DNA and chromium in the presence of curcumin (CC) was studied by differential pulse adsorptive transfer voltammetry using carbon paste electrode (CPE). Curcumin–Cr complex generated changes in calf thymus DNA. The mechanism for DNA cleavage by curcumin–Cr complex appears to involve both the hydroxyl radical as well as singlet oxygen. The characteristic peak of dsDNA, due to the oxidation of guanine residues, drastically decreased. The increased DNA damage by curcumin–Cr complex was observed in the presence of various concentrations of chromium(VI).  相似文献   

19.
Solid‐phase extraction was applied for the separation of protein digests obtained from aged human lenses, cataractous human lenses, calf lens proteins in vitro glycated with dehydroascorbic acid and native calf lens proteins. Four fractions were collected after stepwise elution with different solvents. The first fraction contained about 80% of the digested material possessing free amino groups. At the same time, the third and the fourth fractions were enriched in chromophores, fluorophores, and photosensitizing structures that originate mainly from advanced protein glycation. The comparison between the total digest and the fourth fraction based on their UV absorption at 330 nm, intensity of fluorescence (excitation/emission 350/450 nm), and production of singlet oxygen upon UVA irradiation argues that the solid‐phase extraction was capable of concentrating the advanced glycation end‐products about a hundredfold. Thus, this technique is a useful step for separation and concentration of fluorophores, chromophores, and photosensitizers from aged and glycated lens protein digests.  相似文献   

20.
Purine photoproducts   总被引:2,自引:0,他引:2  
Abstract— DNA purine modifications by ultraviolet irradiation have not been as extensively studied as those of pyrimidines. However, a number of such reactions have been identified. These include photochemical addition of amino acids, photoalkylation by alcohols, amines and other compounds, photochemical activation of procarcinogens to mutagenic electrophiles, and formation of covalent linkages between DNA purines and adjacent bases. The recent characterization of two adenine-adenine di-adducts and the finding of endonucleases from two sources that incise ultraviolet-irradiated DNA at purine photoproducts indicate the possible biological importance of these moieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号