首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of hydrogen addition to ultra lean counterflow CH4/air premixed flames on the extinction limits and the characteristics of NOx emission was investigated by numerical simulation. Detailed chemistry and complex thermal and transport properties were employed. The results show that the addition of hydrogen can significantly enlarge the flammable region and extend the flammability limit to lower equivalence ratios. If the equivalence ratio is kept constant, the addition of hydrogen increases the emission of NO in a flame due to the enhancement in the rate of the NNH or N2O intermediate NO formation routes. The addition of hydrogen causes a monotonic decrease in the formation of NO2 and N2O, except flames near the extinction limits, where the emission of NO2 and N2O first increases, and then decreases with the increase in the fraction of hydrogen. Overall, hydrogen enrichment technology allows stable combustion under ultra lean conditions, resulting in significant CO2 and NO emission reduction.  相似文献   

2.
The effect of CO addition on extinction and NO x formation in lean premixed counterflow CH4/air flames was investigated by numerical simulation. Detailed chemistry and complex thermal and transport properties were employed. A method that gradually switched off the initial reactions of NO formation from different routes was used to analyse the variation of NO formation mechanism. The results indicate that the addition of certain amount of CO increases the strain extinction limits and reduces the radiation extinction limits. As a result, the lean flammability limit of CH4/air premixed flame is extended to leaner side by the addition of CO. The formation of NO in a flame is increased with the addition of CO at a constant equivalence ratio. For an ultra-lean flame, the increase in the formation of NO is mainly because of the increase in the contribution from the NNH intermediate route, while for a near stoichiometric flame, this increase is mainly attributable to the rise in the contribution from the thermal route. With the fraction of added CO being gradually increased, the formation of NO2 in a flame first decreases and then increases at a given equivalence ratio. The addition of CO reduces the formation N2O in an ultra-lean flame, while affects little on the formation of N2O in a near stoichiometric flame.  相似文献   

3.
Control of oscillating combustion and noise based on local flame structure   总被引:2,自引:0,他引:2  
To control combustion oscillations, the characteristics of an oscillating swirl injection premixed flame have been investigated, and control of oscillating combustion and noise based on local flame structure has been conducted. The r.m.s. value of pressure fluctuations and noise level show significantly large values between = 0.8 and 1.1. The beating of pressure fluctuations is observed for the large oscillating flame conditions in this combustor. Relationship between beating of pressure fluctuations and local flame structure was observed by the simultaneous measurement of CH/OH planar laser induced fluorescence and pressure fluctuations. The local flame structure and beating of pressure fluctuations are related and the most complicated flame is formed in the middle pressure fluctuating region of beating. The beating of pressure fluctuations, which plays important roles in noise generation and nitric oxide emission in this combustor, could be controlled by injecting secondary fuel into the recirculating region of oscillating flames. Injecting secondary fuel prevented lean blowout, and low NOx combustion was also achieved even for the case of pure methane injection as a secondary fuel. By injecting secondary fuel into the recirculating region near the swirl injector, the flame lifted from the swirl injector and its reaction region became uniform and widespread, hence resulting in low nitric oxide emission. Secondary mixture injection, fuel diluted with air, is not effective for control of combustion oscillations suppression and lean blowout prevention.  相似文献   

4.
LES studies of the flow in a swirl gas combustor   总被引:4,自引:0,他引:4  
Environmental and other practical concerns have led to the development of compact gas turbine combustors burning lean mixtures leading to potentially low CO and NOx emissions. The compact design requires efficient atomization and mixing together with a compact premixed flame. Associated with these requirements are higher temperatures, increased heat transfer, and thermal load, thus increasing the danger of combustion instabilities (causing performance deterioration and excessive mechanical loads), and possible off-design operation. Numerical simulations of reacting flows are well suited to address these issues. To this end, large eddy simulation (LES) is particularly promising. The philosophy behind LES is to explicitly simulate the large scales of the flow and the thermochemistry, affected by boundary conditions whilst modeling only the small scales, including the interaction between the flow and the combustion processes. Here, we examine the flow and the flame in a model gas turbine combustor (General Electric’s lean premixed dry low NOx LM6000) to evaluate the potential of LES for design studies of engineering applications and to study the effects of the combustor confinement geometry on the flow and on the flame dynamics. Two LES models, a Monotone Integrated LES model with 1 and 2 step Ahrrenius chemistry, and a fractal flame-wrinkling LES model coupled to a conventional one-equation eddy-viscosity subgrid model, are used. Reasonable agreement is found when comparing predictions with experimental data and with other LES computations of the same case. Furthermore, the combustor confinement geometry is found to strongly affect the vortical flow, and hence also the flame and its dynamics.  相似文献   

5.
The mean structure of turbulent bluff-body jets and flames is presented. Measurements of the flow and mixing fields are compared with predictions made using standard turbulence models. It is found that two vortices exist in the recirculation zone; an outer vortex close to the air coflow and an inner vortex between the outer vortex and the jet. The inner vortex is found to shift downstream with increasing jet momentum flux relative to the coflow momentum flux and gradually loses its circulation pattern. The momentum flux ratio of the jet to the coflow in isothermal flows is found to be the only scaling parameter for the flow field structure. Three mixing layers are identified in the recirculation zone. Numerical simulations using the standard k-? and Reynolds stress turbulence models underpredict the length of the recirculation zone. A simple modification to the C1 constant in the dissipation transport equation fixes this deficiency and gives better predictions of the flow and mixing fields. The mixed-is-burnt combustion model is found to be adequate for simulating the temperature and mixing field in the recirculation zone of the bluff-body flames.  相似文献   

6.
Characteristics and structure of inverse flames of natural gas   总被引:2,自引:0,他引:2  
Characteristics and structure of nominally non-premixed flames of natural gas are investigated using a burner that employs simultaneously two distinct features: fuel and oxidiser direct injection, and inverse fuel and oxidiser delivery. At low exit velocities, the result is an inverse diffusion flame that has been noted in the past for its low NOx emissions, soot luminosity, and narrow stability limits. The present study aimed at extending the burner operating range, and it demonstrated that the inverse flame exhibits a varying degree of partial premixing dependent on the discharge nozzle conditions and the ratio of inner air jet and outer fuel jet velocities. These two variables affect the flame length, temperature distributions, and stability limits. Temperature measurements and Schlieren visualisation show areas of enhanced turbulent mixing in the shear region and the presence of a well-mixed reaction zone on the flame centreline. This reaction zone is enveloped by an outer diffusion flame, yielding a unique double-flame structure. As the fuel–air equivalence ratio is decreasing with an increase in the inner jet velocity, the well-mixed reaction zone extends considerably. These findings suggest a method for establishing a flame of uniform high temperature by optimising the coaxial nozzle geometry and flow conditions. The normalised flame length is decreasing exponentially with the air/fuel velocity ratio. Measurements demonstrate that the inverse flame stability limits change qualitatively with varying degree of partial premixing. At the low premixing level, the flame blow-out is a function of the inner and outer jet velocities and the nozzle conditions. The flame blow-out at high degree of partial premixing occurs abruptly at a single value of the inner air jet velocity, regardless of the fuel jet velocity and almost independent of the discharge nozzle conditions.  相似文献   

7.
Compared to hydrocarbons, ammonia's low reactivity and higher NOx emissions limit its practical application. Consequently, its implementation in combustion systems requires a different combustor geometry, by adapting existing systems or developing new ones. This study investigates the flame stability, NO emissions, and flame structure of NH3/CH4/air premixed flames in a novel combustor comprising a double swirl burner. A lean premixed CH4/air mixture of equivalence ratio, Φout, was supplied to the outer swirl, while a NH3/CH4/Air mixture fed the inner swirl. The molar fraction of NH3 in the inner fuel blend, xNH3, was varied from 0 (pure CH4) to 1 (pure NH3) over far-lean to far-rich inner stream equivalence ratio, Φin. This new burner's stability map was established in terms of Φin versus xNH3 for different Φout. Then, NO emissions were measured versus Φin for various xNH3 and Φout. Finally, based on the NO emissions, eight flames were down-selected for in-flame measurements, which included temperature and OH-PLIF. The stability measurements revealed that increasing xNH3 modifies the stability map by increasing the lean blowout limits and narrowing the flashback region. At Φout ≥ 0.6, a stable flame was achieved for a pure inner NH3/air mixture. Low NO emissions were achieved in this burner configuration at xNH3=1 by either enriching or far-leaning Φin. Enriching Φin led to a steep decrease in NO concentrations. However, to achieve low NO concentrations, precise control of Φout was needed. At Φin=1.4, 220 ppm NO at Φout=0.7 versus 690 at Φout=0.6 was measured. Moreover, substantially enriching Φin>1.2 led to a slight decrease in measured NO. Generally, the OH-PLIF images revealed a conical OH-layer at the burner exit. Certain flame conditions created OH-pockets inside the conical structure or formed a V-shaped OH-layer far downstream. This change in flame structure was found to impact NO emissions strongly.  相似文献   

8.
A finite volume large eddy simulation–conditional moment closure (LES-CMC) numerical framework for premixed combustion developed in a previous studyhas been extended to account for differential diffusion. The non-unity Lewis number CMC transport equation has an additional convective term in sample space proportional to the conditional diffusion of the progress variable, that in turn accounts for diffusion normal to the flame front and curvature-induced effects. Planar laminar simulations are first performed using a spatially homogeneous non-unity Lewis number CMC formulation and validated against physical-space fully resolved reference solutions. The same CMC formulation is subsequently used to numerically investigate the effects of curvature for laminar flames having different effective Lewis numbers: a lean methane–air flame with Leeff = 0.99 and a lean hydrogen–air flame with Leeff = 0.33. Results suggest that curvature does not affect the conditional heat release if the effective Lewis number tends to unity, so that curvature-induced transport may be neglected. Finally, the effect of turbulence on the flame structure is qualitatively analysed using LES-CMC simulations with and without differential diffusion for a turbulent premixed bluff body methane–air flame exhibiting local extinction behaviour. Overall, both the unity and the non-unity computations predict the characteristic M-shaped flame observed experimentally, although some minor differences are identified. The findings suggest that for the high Karlovitz number (from 1 to 10) flame considered, turbulent mixing within the flame weakens the differential transport contribution by reducing the conditional scalar dissipation rate and accordingly the conditional diffusion of the progress variable.  相似文献   

9.
Lean premixed combustion has potential advantages of reducing pollutants and improving fuel economy. In some lean engine concepts, the fuel is directly injected into the combustion chamber resulting in a distribution of lean fuel/air mixtures. In this case, very lean mixtures can burn when supported by hot products from more strongly burning flames. This study examines the downstream interaction of opposed jets of a lean-limit CH4/air mixture vs. a lean H2/air flame. The CH4 mixtures are near or below the lean flammability limit. The flame composition is measured by laser-induced Raman scattering and is compared to numerical simulations with detailed chemistry and molecular transport including the Soret effect. Several sub-limit lean CH4/air flames supported by the products from the lean H2/air flame are studied, and a small amount of CO2 product (around 1% mole fraction) is formed in a “negative flame speed” flame where the weak CH4/air mixture diffuses across the stagnation plane into the hot products from the H2/air flame. Raman scattering measurements of temperature and species concentration are compared to detailed simulations using GRI-3.0, C1, and C2 chemical kinetic mechanisms, with good agreement obtained in the lean-limit or sub-limit flames. Stronger self-propagating CH4/air mixtures result in a much higher concentration of product (around 6% CO2 mole fraction), and the simulation results are sensitive to the specific chemical mechanism. These model-data comparisons for stronger CH4/air flames improve when using either the C2 or the Williams mechanisms.  相似文献   

10.
To investigate (fuel-)lean/rich limits and essential stoichiometries, i.e., the borders of lean/rich combustion, one-dimensional steady computations with detailed chemistry for flame balls, counterflow flames, and stretch-free planar flames were conducted using a CH4/O2/Xe mixture that has been used in microgravity experiments. As continuous converged solutions were obtained under lean/rich conditions, it was suggested that the existence of flame ball not only under lean but also under rich condition. Flame radii and temperatures of flame balls decreased and increased toward the lean/rich limits from their maximum and minimum values, respectively. The lean limits were wider in the order of the flame ball, counterflow flame, and stretch-free planar flame. Therefore, the lean flammability limit corresponded to the lean limit of the flame ball in the mixture. Conversely, the rich limits were wider in the order of the counterflow flame, stretch-free planar flame, and flame ball. Thus, the rich flammability limit corresponded to the rich limit of the counterflow flame in the mixture. Essential stoichiometry, which represents the actual stoichiometry depending on the dominant transport in near-flame front, was not uniquely determined as conventional stoichiometry (ϕ = 1); it was located between the equivalence ratio of ϕ = 1 and ϕc, where ϕ c denotes the critical equivalence ratio is evaluated using the fuel and oxidizer Lewis number of a target mixture. The results indicated that the essential stoichiometry of the stretch-free planar flame corresponded to ϕ = 1, that of the flame ball corresponded to ϕ = ϕ c, and that of the stretched flame was located between ϕ = 1 and ϕ c depending on the stretch rate.  相似文献   

11.
This study has been mainly motivated to assess computationally and theoretically the conditional moment closure (CMC) model and the transient flamelet model for the simulation of turbulent nonpremixed flames. These two turbulent combustion models are implemented into the unstructured grid finite volume method that efficiently handles physically and geometrically complex turbulent reacting flows. Moreover, the parallel algorithm has been implemented to improve computational efficiency as well as to reduce the memory load of the CMC procedure. Example cases include two turbulent CO/H2/N2 jet flames having different flow timescales and the turbulent nonpremixed H2/CO flame stabilized on an axisymmetric bluff-body burner. The Lagrangian flamelet model and the simplified CMC formulation are applied to the strongly parabolic jet flame calculation. On the other hand, the Eulerian particle flamelet model and full conservative CMC formulation are employed for the bluff-body flame with flow recirculation. Based on the numerical results, a detailed discussion is given for the comparative performances of the two combustion models in terms of the flame structure and NO x formation characteristics.  相似文献   

12.
Extinction limits and flame bifurcation of lean premixed dimethyl ether–air flames are numerically investigated using the counterflow flame with a reduced chemistry. Emphasis is paid to the combined effect of radiation and flame stretch on the extinction and flammability limits. A method based on the reaction front is presented to predict the Markstein length. The predicted positive Markstein length agrees well with the experimental data. The results show that flow stretch significantly reduces the flame speed and narrows the flammability limit of the stretched dimethyl ether–air flame. It is found that the combined effect of radiation and flow stretch results in a new flame bifurcation and multiple flame regimes. At an equivalence ratio slightly higher than the flammability limit of the planar flame, the distant flame regime appears at low stretch rates. With an increase in the equivalence ratio, in addition to the distant flame, a weak flame isola emerges at moderate stretch rates. With a further increase in the equivalence ratio, the distant flame and the weak flame branches merge together, resulting in the splitting of the weak flame branch into two weak flame branches, one at low stretch and the other at high stretch. Flame stability analysis demonstrates that the high stretch weak flame is also stable. Furthermore, a K-shaped flammability limit diagram showing various flame regimes and their extinction limits is obtained.  相似文献   

13.
A Reynolds-Averaged Navier–Stokes (RANS) simulation of the semi-industrial International Flame Research Foundation (IFRF) furnace is performed using a non-adiabatic Conditional Source-term Estimation (CSE) formulation. This represents the first time that a CSE formulation, which accounts for the effect of radiation on the conditional reaction rates, has been applied to a large scale semi-industrial furnace. The objective of the current study is to assess the capabilities of CSE to accurately reproduce the velocity field, temperature, species concentration and nitrogen oxides (NOx) emission for the IFRF furnace. The flow field is solved using the standard k–ε turbulence model and detailed chemistry is included. NOx emissions are calculated using two different methods. Predicted velocity profiles are in good agreement with the experimental data. The predicted peak temperature occurs closer to the centreline, as compared to the experimental observations, suggesting that the mixing between the fuel jet and vitiated air jet may be overestimated. Good agreement between the species concentrations, including NOx, and the experimental data is observed near the burner exit. Farther downstream, the centreline oxygen concentration is found to be underpredicted. Predicted NOx concentrations are in good agreement with experimental data when calculated using the method of Peters and Weber. The current study indicates that RANS-CSE can accurately predict the main characteristics seen in a semi-industrial IFRF furnace.  相似文献   

14.
We have investigated the downward flame spread over a thin solid fuel. Hydrogen, methane, or propane, included in the gaseous product of pyrolysis reaction, is added in the ambient air. The fuel concentration is kept below the lean flammability limit to observe the partially premixing effect. Both experimental and numerical studies have been conducted. Results show that, in partially premixed atmospheres, both blue flame and luminous flame regions are enlarged, and the flame spread rate is increased. Based on the flame index, a so-called triple flame is observed. The heat release rate ahead of the original diffusion flame is increased by adding the fuel, and its profile is moved upstream. Here, we focus on the heat input by adding the fuel in the opposed air, which could be a direct factor to intensify the combustion reaction. The dependence of the flame spread rate on the heat input is almost the same for methane and propane/air mixtures, but larger effect is observed for hydrogen/air mixture. Since the deficient reactant in lean mixture is fuel, the larger effect of hydrogen could be explained based on the Lewis number consideration. That is, the combustion is surely intensified for all cases, but this effect is larger for lean hydrogen/air mixture (Le < 1), because more fuel diffuses toward the lean premixed flame ahead of the original diffusion flame. Resultantly, the pyrolysis reaction is promoted to support the higher flame spread rate.  相似文献   

15.
16.
17.
The blowout behavior of inclined nonpremixed turbulent jet flames is investigated by varying the jet inclined angle in the range of -90° to 90° The critical jet velocity at blow-out limit is quantified experimentally for various nozzle diameters, different fuels and inclined angles. Numerical simulations are performed to emphasize the flow field difference for the positive and negative inclined angles. Physical modeling is conducted to incorporate the effect of the inclined angle on blow-out behavior. Major findings include: (1) The negatively inclined jet flames show more intense yellow luminosity with larger sooting zones than the positively inclined jet flames; (2) The blowout limit decreases appreciably with the jet inclined angle for the negatively inclined flames, while for the positively inclined jet flames, this decrease is relatively small; (3) Physical analysis of the flow development of inclined jets is conducted, indicating the centerline velocity along the jet trajectory decreases faster for the flame with smaller inclined angle. And the decrease rate is relatively larger for the negatively inclined jet flames; (4) Based on the analysis of the flow development as well as the characteristic velocity with the inclined angle variation, a model based on the Damköhler number (Da) accounting for the effect of jet inclined angle is developed to characterize the blowout limits of inclined jet flames. The proposed model successfully correlates the experimental data. The present findings provide new data and a basic scaling law for the blowout limit of nonpremixed inclined turbulent jet flames, revealing the effect of the relative angle between the jet momentum and buoyancy.  相似文献   

18.
采用叶轮型旋流燃烧器,选取氢气作为燃料添加剂,研究了掺氢比对氨气旋流火焰稳定性的影响,分析了不同旋流数、叶片数、当量比以及预混气总流量条件下,旋流火焰形态变化。测定并分析了不同参数对旋流火焰燃烧极限范围的影响。结果表明,随掺氢比的增大,火焰逐渐由“V”型转化为稳定的“M”型,燃烧反应愈发充分;高旋流数(1.27)或低叶片数(6片)相比低旋流数(0.42)或高叶片数(8片)更有利于旋流火焰的稳定和燃烧的充分进行;相比富燃,贫燃有利于形成稳定的旋流火焰;预混气总流量较大时,火焰高度较高.对于燃烧极限,掺氢比越高,极限范围越大;总流量的变化对贫燃极限影响较小,对富燃极限影响较大;高旋流数(1.27)条件下,燃烧极限范围较大。  相似文献   

19.
While reasonably accurate in simulating gas phase combustion in biomass grate furnaces, CFD tools based on simple turbulence–chemistry interaction models and global reaction mechanisms have been shown to lack in reliability regarding the prediction of NOx formation. Coupling detailed NOx reaction kinetics with advanced turbulence–chemistry interaction models is a promising alternative, yet computationally inefficient for engineering purposes. In the present work, a model is proposed to overcome these difficulties. The model is based on the Realizable k–? model for turbulence, Eddy Dissipation Concept for turbulence–chemistry interaction and the HK97 reaction mechanism. The assessment of the sub-models in terms of accuracy and computational effort was carried out on three laboratory-scale turbulent jet flames in comparison with the experimental data. Without taking NOx formation into account, the accuracy of turbulence modelling and turbulence–chemistry interaction modelling was systematically examined on Sandia Flame D and Sandia CO/H2/N2 Flame B to support the choice of the associated models. As revealed by the Large Eddy Simulations of the former flame, the shortcomings of turbulence modelling by the Reynolds averaged Navier–Stokes (RANS) approach considerably influence the prediction of the mixing-dominated combustion process. This reduced the sensitivity of the RANS results to the variations of turbulence–chemistry interaction models and combustion kinetics. Issues related to the NOx formation with a focus on fuel bound nitrogen sources were investigated on a NH3-doped syngas flame. The experimentally observed trend in NOx yield from NH3 was correctly reproduced by HK97, whereas the replacement of its combustion subset by that of a detailed reaction scheme led to a more accurate agreement, but at increased computational costs. Moreover, based on results of simulations with HK97, the main features of the local course of the NOx formation processes were identified by a detailed analysis of the interactions between the nitrogen chemistry and the underlying flow field.  相似文献   

20.
Reduced mechanisms for methane-air and hydrogen-air combustion including NO formation have been constructed with the computational singular perturbation (CSP) method using the fully automated algorithm described by Massias et al. The analysis was performed on solutions of unstrained adiabatic premixed flames with detailed chemical kinetics described by GRI 2.11 for methane and a 71-reaction mechanism for hydrogen including NO x formation. A 10-step reduced mechanism for methane has been constructed which reproduces accurately laminar burning velocities, flame temperatures and mass fraction distributions of major species for the whole flammability range. Many steady-state species are also predicted satisfactorily. This mechanism is an improvement over the seven-step set of Massias et al, especially for rich flames, because the use of HCNO, HCN and C2H2 as major species results in a better calculation of prompt NO. The present 10-step mechanism may thus also be applicable to diffusion flames. A five-step mechanism for lean and hydrogen-rich combustion has also been constructed based on a detailed mechanism including thermal NO. This mechanism is accurate for a wide range of the equivalence ratio and for pressures as high as 40 bar. For both fuels, the CSP algorithm automatically pointed to the same steady-state species as those identified by laborious analysis or intuition in the literature and the global reactions were similar to well established previous methane-reduced mechanisms. This implies that the method is very well suited for the study of complex mechanisms for heavy hydrocarbon combustion.M This article features supplementary data files available from the supplemental page in the online journal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号